Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ea5f339a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ea5f339a
编写于
5月 23, 2022
作者:
W
Wenyu
提交者:
GitHub
5月 23, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
reorg optimizer (#6016)
上级
549df290
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
123 addition
and
87 deletion
+123
-87
ppdet/optimizer/__init__.py
ppdet/optimizer/__init__.py
+16
-0
ppdet/optimizer/ema.py
ppdet/optimizer/ema.py
+107
-0
ppdet/optimizer/optimizer.py
ppdet/optimizer/optimizer.py
+0
-87
未找到文件。
ppdet/optimizer/__init__.py
0 → 100644
浏览文件 @
ea5f339a
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.optimizer
import
*
from
.ema
import
ModelEMA
ppdet/optimizer/ema.py
0 → 100644
浏览文件 @
ea5f339a
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
weakref
class
ModelEMA
(
object
):
"""
Exponential Weighted Average for Deep Neutal Networks
Args:
model (nn.Layer): Detector of model.
decay (int): The decay used for updating ema parameter.
Ema's parameter are updated with the formula:
`ema_param = decay * ema_param + (1 - decay) * cur_param`.
Defaults is 0.9998.
ema_decay_type (str): type in ['threshold', 'normal', 'exponential'],
'threshold' as default.
cycle_epoch (int): The epoch of interval to reset ema_param and
step. Defaults is -1, which means not reset. Its function is to
add a regular effect to ema, which is set according to experience
and is effective when the total training epoch is large.
"""
def
__init__
(
self
,
model
,
decay
=
0.9998
,
ema_decay_type
=
'threshold'
,
cycle_epoch
=-
1
):
self
.
step
=
0
self
.
epoch
=
0
self
.
decay
=
decay
self
.
state_dict
=
dict
()
for
k
,
v
in
model
.
state_dict
().
items
():
self
.
state_dict
[
k
]
=
paddle
.
zeros_like
(
v
)
self
.
ema_decay_type
=
ema_decay_type
self
.
cycle_epoch
=
cycle_epoch
self
.
_model_state
=
{
k
:
weakref
.
ref
(
p
)
for
k
,
p
in
model
.
state_dict
().
items
()
}
def
reset
(
self
):
self
.
step
=
0
self
.
epoch
=
0
for
k
,
v
in
self
.
state_dict
.
items
():
self
.
state_dict
[
k
]
=
paddle
.
zeros_like
(
v
)
def
resume
(
self
,
state_dict
,
step
=
0
):
for
k
,
v
in
state_dict
.
items
():
if
k
in
self
.
state_dict
:
self
.
state_dict
[
k
]
=
v
self
.
step
=
step
def
update
(
self
,
model
=
None
):
if
self
.
ema_decay_type
==
'threshold'
:
decay
=
min
(
self
.
decay
,
(
1
+
self
.
step
)
/
(
10
+
self
.
step
))
elif
self
.
ema_decay_type
==
'exponential'
:
decay
=
self
.
decay
*
(
1
-
math
.
exp
(
-
(
self
.
step
+
1
)
/
2000
))
else
:
decay
=
self
.
decay
self
.
_decay
=
decay
if
model
is
not
None
:
model_dict
=
model
.
state_dict
()
else
:
model_dict
=
{
k
:
p
()
for
k
,
p
in
self
.
_model_state
.
items
()}
assert
all
(
[
v
is
not
None
for
_
,
v
in
model_dict
.
items
()]),
'python gc.'
for
k
,
v
in
self
.
state_dict
.
items
():
v
=
decay
*
v
+
(
1
-
decay
)
*
model_dict
[
k
]
v
.
stop_gradient
=
True
self
.
state_dict
[
k
]
=
v
self
.
step
+=
1
def
apply
(
self
):
if
self
.
step
==
0
:
return
self
.
state_dict
state_dict
=
dict
()
for
k
,
v
in
self
.
state_dict
.
items
():
if
self
.
ema_decay_type
!=
'exponential'
:
v
=
v
/
(
1
-
self
.
_decay
**
self
.
step
)
v
.
stop_gradient
=
True
state_dict
[
k
]
=
v
self
.
epoch
+=
1
if
self
.
cycle_epoch
>
0
and
self
.
epoch
==
self
.
cycle_epoch
:
self
.
reset
()
return
state_dict
ppdet/optimizer.py
→
ppdet/optimizer
/optimizer
.py
浏览文件 @
ea5f339a
...
...
@@ -18,7 +18,6 @@ from __future__ import print_function
import
sys
import
math
import
weakref
import
paddle
import
paddle.nn
as
nn
...
...
@@ -360,89 +359,3 @@ class OptimizerBuilder():
parameters
=
params
,
grad_clip
=
grad_clip
,
**
optim_args
)
class
ModelEMA
(
object
):
"""
Exponential Weighted Average for Deep Neutal Networks
Args:
model (nn.Layer): Detector of model.
decay (int): The decay used for updating ema parameter.
Ema's parameter are updated with the formula:
`ema_param = decay * ema_param + (1 - decay) * cur_param`.
Defaults is 0.9998.
ema_decay_type (str): type in ['threshold', 'normal', 'exponential'],
'threshold' as default.
cycle_epoch (int): The epoch of interval to reset ema_param and
step. Defaults is -1, which means not reset. Its function is to
add a regular effect to ema, which is set according to experience
and is effective when the total training epoch is large.
"""
def
__init__
(
self
,
model
,
decay
=
0.9998
,
ema_decay_type
=
'threshold'
,
cycle_epoch
=-
1
):
self
.
step
=
0
self
.
epoch
=
0
self
.
decay
=
decay
self
.
state_dict
=
dict
()
for
k
,
v
in
model
.
state_dict
().
items
():
self
.
state_dict
[
k
]
=
paddle
.
zeros_like
(
v
)
self
.
ema_decay_type
=
ema_decay_type
self
.
cycle_epoch
=
cycle_epoch
self
.
_model_state
=
{
k
:
weakref
.
ref
(
p
)
for
k
,
p
in
model
.
state_dict
().
items
()
}
def
reset
(
self
):
self
.
step
=
0
self
.
epoch
=
0
for
k
,
v
in
self
.
state_dict
.
items
():
self
.
state_dict
[
k
]
=
paddle
.
zeros_like
(
v
)
def
resume
(
self
,
state_dict
,
step
=
0
):
for
k
,
v
in
state_dict
.
items
():
if
k
in
self
.
state_dict
:
self
.
state_dict
[
k
]
=
v
self
.
step
=
step
def
update
(
self
,
model
=
None
):
if
self
.
ema_decay_type
==
'threshold'
:
decay
=
min
(
self
.
decay
,
(
1
+
self
.
step
)
/
(
10
+
self
.
step
))
elif
self
.
ema_decay_type
==
'exponential'
:
decay
=
self
.
decay
*
(
1
-
math
.
exp
(
-
(
self
.
step
+
1
)
/
2000
))
else
:
decay
=
self
.
decay
self
.
_decay
=
decay
if
model
is
not
None
:
model_dict
=
model
.
state_dict
()
else
:
model_dict
=
{
k
:
p
()
for
k
,
p
in
self
.
_model_state
.
items
()}
assert
all
(
[
v
is
not
None
for
_
,
v
in
model_dict
.
items
()]),
'python gc.'
for
k
,
v
in
self
.
state_dict
.
items
():
v
=
decay
*
v
+
(
1
-
decay
)
*
model_dict
[
k
]
v
.
stop_gradient
=
True
self
.
state_dict
[
k
]
=
v
self
.
step
+=
1
def
apply
(
self
):
if
self
.
step
==
0
:
return
self
.
state_dict
state_dict
=
dict
()
for
k
,
v
in
self
.
state_dict
.
items
():
if
self
.
ema_decay_type
!=
'exponential'
:
v
=
v
/
(
1
-
self
.
_decay
**
self
.
step
)
v
.
stop_gradient
=
True
state_dict
[
k
]
=
v
self
.
epoch
+=
1
if
self
.
cycle_epoch
>
0
and
self
.
epoch
==
self
.
cycle_epoch
:
self
.
reset
()
return
state_dict
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录