未验证 提交 e9695f49 编写于 作者: C Cao Ying 提交者: GitHub

Merge pull request #5014 from peterzhang2029/bi_tensor_prod_op

Add Bilinear Tensor Product operator.
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/bilinear_tensor_product_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class BilinearTensorProductOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Weight"),
"Input(Weight) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
auto weight_dims = ctx->GetInputDim("Weight");
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "The input(X) must be a 2D Tensor.");
PADDLE_ENFORCE_EQ(y_dims.size(), 2UL, "The input(Y) must be a 2D Tensor.");
PADDLE_ENFORCE_EQ(weight_dims.size(), 3UL,
"The input(Weight) must be a 3D tensor.");
PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0],
"The first dimension(batch_size) of input(X) must be "
"equal to the first dimension of the input(Y).");
PADDLE_ENFORCE_EQ(x_dims[1], weight_dims[1],
"The second dimension of input(X) must be equal to "
"the second dimension of the input(Weight).");
PADDLE_ENFORCE_EQ(y_dims[1], weight_dims[2],
"The second dimension of input(Y) must be equal to "
"the third dimension of the input(Weight).");
if (ctx->HasInput("Bias")) {
auto bias_dims = ctx->GetInputDim("Bias");
PADDLE_ENFORCE(bias_dims.size() == 2UL && bias_dims[0] == 1UL,
"The Input(Bias) must be a 2-D tensor with "
"the 2nd dimension fixed to 1 (a row vector).");
PADDLE_ENFORCE_EQ(bias_dims[1], weight_dims[0],
"The second dimension of input(Bias) must be equal "
"to the first dimension of the input(Weight).");
}
ctx->SetOutputDim("Out", {x_dims[0], weight_dims[0]});
ctx->ShareLoD("X", /*->*/ "Out");
}
};
class BilinearTensorProductOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BilinearTensorProductOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of bilinear_tensor_product operator.");
AddInput("Y", "The second input of bilinear_tensor_product operator.");
AddInput("Weight",
"The learnable parameters of bilinear_tensor_product operator.");
AddInput("Bias", "The learnable bias of bilinear_tensor_product operator.")
.AsDispensable();
AddOutput("Out", "The output of bilinear_tensor_product operator.");
AddComment(R"DOC(
Bilinear Tensor Product operator.
Given input X and Y, a 3D tensor weight, and bias. Each column of the
output is computed by one slice i = 1, . . . , k of the tensor:
M = (X W_i) \cdot Y
Out_i = \sum_i {M_i} + Bias_i
)DOC");
}
};
class BilinearTensorProductOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Weight"),
"Input(Weight) should not be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null.");
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
auto weight_dims = ctx->GetInputDim("Weight");
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
PADDLE_ENFORCE_EQ(out_dims.size(), 2UL,
"The input(Out@GRAD) must be a 2D Tensor.");
PADDLE_ENFORCE_EQ(
x_dims[0], out_dims[0],
"The first dimension(batch_size) of input(Out@GRAD) must be "
"equal to the first dimension of the Input(X).");
PADDLE_ENFORCE_EQ(
weight_dims[0], out_dims[1],
"The second dimension of input(Out@GRAD) must be equal to "
"the third dimension of the Input(Weight).");
if (ctx->HasInput("Bias")) {
auto bias_dims = ctx->GetInputDim("Bias");
PADDLE_ENFORCE_EQ(
bias_dims[1], out_dims[1],
"The second dimension of input(Out@GRAD) must be equal to "
"the second dimension of the Input(Bias).");
auto bias_grad_name = framework::GradVarName("Bias");
if (ctx->HasOutput(bias_grad_name))
ctx->SetOutputDim(bias_grad_name, bias_dims);
}
auto x_grad_name = framework::GradVarName("X");
auto y_grad_name = framework::GradVarName("Y");
auto weight_grad_name = framework::GradVarName("Weight");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims);
}
if (ctx->HasOutput(y_grad_name)) {
ctx->SetOutputDim(y_grad_name, y_dims);
}
if (ctx->HasOutput(weight_grad_name)) {
ctx->SetOutputDim(weight_grad_name, weight_dims);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(bilinear_tensor_product, ops::BilinearTensorProductOp,
ops::BilinearTensorProductOpMaker, bilinear_tensor_product_grad,
ops::BilinearTensorProductOpGrad);
REGISTER_OP_CPU_KERNEL(
bilinear_tensor_product,
ops::BilinearTensorProductKernel<paddle::platform::CPUPlace, float>,
ops::BilinearTensorProductKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(
bilinear_tensor_product_grad,
ops::BilinearTensorProductGradKernel<paddle::platform::CPUPlace, float>,
ops::BilinearTensorProductGradKernel<paddle::platform::CPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/bilinear_tensor_product_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
bilinear_tensor_product,
ops::BilinearTensorProductKernel<paddle::platform::GPUPlace, float>,
ops::BilinearTensorProductKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(
bilinear_tensor_product_grad,
ops::BilinearTensorProductGradKernel<paddle::platform::GPUPlace, float>,
ops::BilinearTensorProductGradKernel<paddle::platform::GPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
using framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename Place, typename T>
class BilinearTensorProductKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* weight = ctx.Input<Tensor>("Weight");
auto* bias = ctx.Input<Tensor>("Bias");
auto* out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
auto y_mat = EigenMatrix<T>::From(*y);
auto output_mat = EigenMatrix<T>::From(*out);
auto batch_size = x->dims()[0];
auto weight_dims = weight->dims();
int out_dim = weight_dims[0];
auto x_dim = weight_dims[1];
auto y_dim = weight_dims[2];
auto place = ctx.GetEigenDevice<Place>();
// Create the intermediate variable to caculate the result of
// Input(X) multiplied by Input(Weight_i), the formula is:
// left_mul = X Weight_i.
Tensor left_mul;
left_mul.mutable_data<T>(framework::make_ddim({batch_size, y_dim}),
ctx.GetPlace());
auto left_mul_mat = EigenMatrix<T>::From(left_mul);
for (int i = 0; i < out_dim; ++i) {
auto output_col_vec = output_mat.chip(i, 1);
Tensor weight_mat =
weight->Slice(i, i + 1).Resize(framework::make_ddim({x_dim, y_dim}));
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasNoTrans,
batch_size, y_dim, x_dim, 1, x->data<T>(),
weight_mat.data<T>(), 0, left_mul.data<T>());
output_col_vec.device(place) =
(left_mul_mat * y_mat).sum(Eigen::DSizes<int, 1>(1));
}
if (bias) {
auto bias_vec = EigenMatrix<T>::From(*bias);
Eigen::DSizes<int, 2> bcast(batch_size, 1);
output_mat.device(place) = bias_vec.broadcast(bcast) + output_mat;
}
}
};
template <typename Place, typename T>
class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const Tensor* x = ctx.Input<Tensor>("X");
const Tensor* y = ctx.Input<Tensor>("Y");
const Tensor* weight = ctx.Input<Tensor>("Weight");
Tensor* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
Tensor* d_y = ctx.Output<Tensor>(framework::GradVarName("Y"));
Tensor* d_weight = ctx.Output<Tensor>(framework::GradVarName("Weight"));
Tensor* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
const Tensor* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto batch_size = x->dims()[0];
auto weight_dims = weight->dims();
int out_dim = weight_dims[0];
auto x_dim = weight_dims[1];
auto y_dim = weight_dims[2];
auto x_mat = EigenMatrix<T>::From(*x);
auto y_mat = EigenMatrix<T>::From(*y);
auto d_out_mat = EigenMatrix<T>::From(*d_out);
auto place = ctx.GetEigenDevice<Place>();
// Create the intermediate variable to caculate the Output(Y@Grad).
Tensor x_scale;
x_scale.mutable_data<T>(framework::make_ddim({batch_size, x_dim}),
ctx.GetPlace());
auto x_scale_mat = EigenMatrix<T>::From(x_scale);
// Create the intermediate variable to caculate the Output(X@Grad).
Tensor y_scale;
y_scale.mutable_data<T>(framework::make_ddim({batch_size, y_dim}),
ctx.GetPlace());
auto y_scale_mat = EigenMatrix<T>::From(y_scale);
math::SetConstant<Place, T> set_zero;
// Set Output(X@Grad) be zero.
if (d_x) {
d_x->mutable_data<T>(ctx.GetPlace());
set_zero(ctx.device_context(), d_x, static_cast<T>(0));
}
// Set Output(Y@Grad) be zero.
if (d_y) {
d_y->mutable_data<T>(ctx.GetPlace());
set_zero(ctx.device_context(), d_y, static_cast<T>(0));
}
// Caculate the Output(X@Grad) and Output(Y@Grad).
if (d_x || d_y) {
Eigen::DSizes<int, 2> bcast_for_x(1, y_dim);
Eigen::DSizes<int, 2> bcast_for_y(1, x_dim);
for (int i = 0; i < out_dim; ++i) {
Tensor weight_i = weight->Slice(i, i + 1).Resize(
framework::make_ddim({x_dim, y_dim}));
auto output_vec = d_out_mat.chip(i, 1);
if (d_x) {
y_scale_mat.device(place) =
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1))
.broadcast(bcast_for_x) *
y_mat;
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasTrans,
batch_size, x_dim, y_dim, 1, y_scale.data<T>(),
weight_i.data<T>(), 1, d_x->data<T>());
}
if (d_y) {
x_scale_mat.device(place) =
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1))
.broadcast(bcast_for_y) *
x_mat;
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasNoTrans,
batch_size, y_dim, x_dim, 1, x_scale.data<T>(),
weight_i.data<T>(), 1, d_y->data<T>());
}
}
}
// Caculate the gradient of Input(Weight).
if (d_weight) {
d_weight->mutable_data<T>(ctx.GetPlace());
Eigen::DSizes<int, 2> bcast_for_weight(1, x_dim);
for (int i = 0; i < out_dim; ++i) {
Tensor d_weight_i = d_weight->Slice(i, i + 1).Resize(
framework::make_ddim({x_dim, y_dim}));
auto output_vec = d_out_mat.chip(i, 1);
x_scale_mat.device(place) =
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1))
.broadcast(bcast_for_weight) *
x_mat;
math::gemm<Place, T>(ctx.device_context(), CblasTrans, CblasNoTrans,
x_dim, y_dim, batch_size, 1, x_scale.data<T>(),
y->data<T>(), 0, d_weight_i.data<T>());
}
}
// Caculate the gradient of Input(Bias).
if (d_bias) {
d_bias->mutable_data<T>(ctx.GetPlace());
auto d_bias_mat = EigenMatrix<T>::From(*d_bias);
d_bias_mat.device(place) = d_out_mat.sum(Eigen::DSizes<int, 1>(0));
}
}
};
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
from op_test import OpTest
class TestBilinearTensorProductOp(OpTest):
def setUp(self):
self.op_type = "bilinear_tensor_product"
batch_size = 6
size0 = 3
size1 = 4
size2 = 5
a = np.random.random((batch_size, size0)).astype("float32")
b = np.random.random((batch_size, size1)).astype("float32")
w = np.random.random((size2, size0, size1)).astype("float32")
bias = np.random.random((1, size2)).astype("float32")
output = np.zeros((batch_size, size2)).astype("float32")
for i in range(size2):
w_i = w[i, :, :]
output[:, i] = np.sum(np.matmul(a, w_i) * b, axis=1)
self.inputs = {
'X': a,
'Y': b,
'Weight': w,
'Bias': bias,
}
self.outputs = {'Out': output + bias}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y', 'Weight', 'Bias'], 'Out')
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册