Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c5d71077
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c5d71077
编写于
11月 13, 2017
作者:
P
peterzhang2029
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine var name
上级
0a6262d5
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
22 addition
and
22 deletion
+22
-22
paddle/operators/bilinear_tensor_product_op.h
paddle/operators/bilinear_tensor_product_op.h
+22
-22
未找到文件。
paddle/operators/bilinear_tensor_product_op.h
浏览文件 @
c5d71077
...
...
@@ -43,25 +43,25 @@ class BilinearTensorProductKernel : public framework::OpKernel<T> {
auto
batch_size
=
x
->
dims
()[
0
];
auto
weight_dims
=
weight
->
dims
();
int
O
ut_dim
=
weight_dims
[
0
];
int
X
_dim
=
weight_dims
[
1
];
int
Y
_dim
=
weight_dims
[
2
];
int
o
ut_dim
=
weight_dims
[
0
];
auto
x
_dim
=
weight_dims
[
1
];
auto
y
_dim
=
weight_dims
[
2
];
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
// Create the intermediate variable to caculate the result of
// Input(X) multiplied by Input(Weight_i), the formula is:
// left_mul = X Weight_i.
Tensor
left_mul
;
left_mul
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
Y
_dim
}),
left_mul
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
y
_dim
}),
ctx
.
GetPlace
());
auto
left_mul_mat
=
EigenMatrix
<
T
>::
From
(
left_mul
);
for
(
int
i
=
0
;
i
<
O
ut_dim
;
++
i
)
{
for
(
int
i
=
0
;
i
<
o
ut_dim
;
++
i
)
{
auto
output_col_vec
=
output_mat
.
chip
(
i
,
1
);
Tensor
weight_mat
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
X_dim
,
Y
_dim
}));
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
x_dim
,
y
_dim
}));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
Y_dim
,
X
_dim
,
1
,
x
->
data
<
T
>
(),
batch_size
,
y_dim
,
x
_dim
,
1
,
x
->
data
<
T
>
(),
weight_mat
.
data
<
T
>
(),
0
,
left_mul
.
data
<
T
>
());
output_col_vec
.
device
(
place
)
=
(
left_mul_mat
*
y_mat
).
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
));
...
...
@@ -89,9 +89,9 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
auto
batch_size
=
x
->
dims
()[
0
];
auto
weight_dims
=
weight
->
dims
();
int
O
ut_dim
=
weight_dims
[
0
];
int
X
_dim
=
weight_dims
[
1
];
int
Y
_dim
=
weight_dims
[
2
];
int
o
ut_dim
=
weight_dims
[
0
];
auto
x
_dim
=
weight_dims
[
1
];
auto
y
_dim
=
weight_dims
[
2
];
auto
x_mat
=
EigenMatrix
<
T
>::
From
(
*
x
);
auto
y_mat
=
EigenMatrix
<
T
>::
From
(
*
y
);
...
...
@@ -100,13 +100,13 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
// Create the intermediate variable to caculate the Output(Y@Grad).
Tensor
x_scale
;
x_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
X
_dim
}),
x_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
x
_dim
}),
ctx
.
GetPlace
());
auto
x_scale_mat
=
EigenMatrix
<
T
>::
From
(
x_scale
);
// Create the intermediate variable to caculate the Output(X@Grad).
Tensor
y_scale
;
y_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
Y
_dim
}),
y_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
y
_dim
}),
ctx
.
GetPlace
());
auto
y_scale_mat
=
EigenMatrix
<
T
>::
From
(
y_scale
);
...
...
@@ -126,11 +126,11 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
// Caculate the Output(X@Grad) and Output(Y@Grad).
if
(
d_x
||
d_y
)
{
Eigen
::
DSizes
<
int
,
2
>
bcast_for_x
(
1
,
Y
_dim
);
Eigen
::
DSizes
<
int
,
2
>
bcast_for_y
(
1
,
X
_dim
);
for
(
int
i
=
0
;
i
<
O
ut_dim
;
++
i
)
{
Eigen
::
DSizes
<
int
,
2
>
bcast_for_x
(
1
,
y
_dim
);
Eigen
::
DSizes
<
int
,
2
>
bcast_for_y
(
1
,
x
_dim
);
for
(
int
i
=
0
;
i
<
o
ut_dim
;
++
i
)
{
Tensor
weight_i
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
X_dim
,
Y
_dim
}));
framework
::
make_ddim
({
x_dim
,
y
_dim
}));
auto
output_vec
=
d_out_mat
.
chip
(
i
,
1
);
if
(
d_x
)
{
y_scale_mat
.
device
(
place
)
=
...
...
@@ -138,7 +138,7 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
.
broadcast
(
bcast_for_x
)
*
y_mat
;
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasTrans
,
batch_size
,
X_dim
,
Y
_dim
,
1
,
y_scale
.
data
<
T
>
(),
batch_size
,
x_dim
,
y
_dim
,
1
,
y_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
d_x
->
data
<
T
>
());
}
if
(
d_y
)
{
...
...
@@ -147,7 +147,7 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
.
broadcast
(
bcast_for_y
)
*
x_mat
;
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
Y_dim
,
X
_dim
,
1
,
x_scale
.
data
<
T
>
(),
batch_size
,
y_dim
,
x
_dim
,
1
,
x_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
d_y
->
data
<
T
>
());
}
}
...
...
@@ -156,17 +156,17 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
// Caculate the gradient of Input(Weight).
if
(
d_weight
)
{
d_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Eigen
::
DSizes
<
int
,
2
>
bcast_for_weight
(
1
,
X
_dim
);
for
(
int
i
=
0
;
i
<
O
ut_dim
;
++
i
)
{
Eigen
::
DSizes
<
int
,
2
>
bcast_for_weight
(
1
,
x
_dim
);
for
(
int
i
=
0
;
i
<
o
ut_dim
;
++
i
)
{
Tensor
d_weight_i
=
d_weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
X_dim
,
Y
_dim
}));
framework
::
make_ddim
({
x_dim
,
y
_dim
}));
auto
output_vec
=
d_out_mat
.
chip
(
i
,
1
);
x_scale_mat
.
device
(
place
)
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_weight
)
*
x_mat
;
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasTrans
,
CblasNoTrans
,
X_dim
,
Y
_dim
,
batch_size
,
1
,
x_scale
.
data
<
T
>
(),
x_dim
,
y
_dim
,
batch_size
,
1
,
x_scale
.
data
<
T
>
(),
y
->
data
<
T
>
(),
0
,
d_weight_i
.
data
<
T
>
());
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录