Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e7ca8b27
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e7ca8b27
编写于
3月 01, 2017
作者:
W
wangkuiyi
提交者:
GitHub
3月 01, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1499 from reyoung/feature/inferencer
Complete inferencer
上级
cdecd53b
500d8836
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
112 addition
and
18 deletion
+112
-18
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+13
-0
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+5
-1
python/paddle/v2/dataset/mnist.py
python/paddle/v2/dataset/mnist.py
+15
-14
python/paddle/v2/inferencer.py
python/paddle/v2/inferencer.py
+59
-0
python/paddle/v2/reader/decorator.py
python/paddle/v2/reader/decorator.py
+20
-3
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
e7ca8b27
...
...
@@ -44,6 +44,19 @@ def main():
batch_size
=
32
),
event_handler
=
event_handler
)
# output is a softmax layer. It returns probabilities.
# Shape should be (100, 10)
probs
=
paddle
.
infer
(
output
=
inference
,
parameters
=
parameters
,
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
firstn
(
paddle
.
reader
.
map_readers
(
lambda
item
:
(
item
[
0
],
),
paddle
.
dataset
.
mnist
.
test
()),
n
=
100
),
batch_size
=
32
))
print
probs
.
shape
if
__name__
==
'__main__'
:
main
()
python/paddle/v2/__init__.py
浏览文件 @
e7ca8b27
...
...
@@ -24,13 +24,14 @@ from . import dataset
from
.
import
reader
import
attr
import
pooling
import
inferencer
import
networks
import
py_paddle.swig_paddle
as
api
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_type'
,
'attr'
,
'pooling'
,
'data_feeder'
,
'dataset'
,
'reader'
,
'topology'
,
'networks'
'topology'
,
'networks'
,
'inferencer'
,
'infer'
]
...
...
@@ -40,3 +41,6 @@ def init(**kwargs):
args
.
append
(
'--%s=%s'
%
(
key
,
str
(
kwargs
[
key
])))
api
.
initPaddle
(
*
args
)
infer
=
inferencer
.
infer
python/paddle/v2/dataset/mnist.py
浏览文件 @
e7ca8b27
...
...
@@ -35,24 +35,25 @@ def reader_creator(image_filename, label_filename, buffer_size):
l
=
subprocess
.
Popen
([
zcat_cmd
,
label_filename
],
stdout
=
subprocess
.
PIPE
)
l
.
stdout
.
read
(
8
)
# skip some magic bytes
while
True
:
labels
=
numpy
.
fromfile
(
l
.
stdout
,
'ubyte'
,
count
=
buffer_size
).
astype
(
"int"
)
try
:
# reader could be break.
while
True
:
labels
=
numpy
.
fromfile
(
l
.
stdout
,
'ubyte'
,
count
=
buffer_size
).
astype
(
"int"
)
if
labels
.
size
!=
buffer_size
:
break
# numpy.fromfile returns empty slice after EOF.
if
labels
.
size
!=
buffer_size
:
break
# numpy.fromfile returns empty slice after EOF.
images
=
numpy
.
fromfile
(
m
.
stdout
,
'ubyte'
,
count
=
buffer_size
*
28
*
28
).
reshape
(
(
buffer_size
,
28
*
28
)).
astype
(
'float32'
)
images
=
numpy
.
fromfile
(
m
.
stdout
,
'ubyte'
,
count
=
buffer_size
*
28
*
28
).
reshape
(
(
buffer_size
,
28
*
28
)).
astype
(
'float32'
)
images
=
images
/
255.0
*
2.0
-
1.0
images
=
images
/
255.0
*
2.0
-
1.0
for
i
in
xrange
(
buffer_size
):
yield
images
[
i
,
:],
int
(
labels
[
i
])
m
.
terminate
()
l
.
terminate
()
for
i
in
xrange
(
buffer_size
):
yield
images
[
i
,
:],
int
(
labels
[
i
])
finally
:
m
.
terminate
()
l
.
terminate
()
return
reader
...
...
python/paddle/v2/inferencer.py
0 → 100644
浏览文件 @
e7ca8b27
import
py_paddle.swig_paddle
as
api
import
topology
from
data_feeder
import
DataFeeder
import
itertools
import
numpy
__all__
=
[
'Inference'
,
'infer'
]
class
Inference
(
object
):
def
__init__
(
self
,
output
,
parameters
):
topo
=
topology
.
Topology
(
output
)
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
topo
.
proto
(),
api
.
CREATE_MODE_TESTING
,
[
api
.
PARAMETER_VALUE
])
for
param
in
gm
.
getParameters
():
val
=
param
.
getBuf
(
api
.
PARAMETER_VALUE
)
name
=
param
.
getName
()
assert
isinstance
(
val
,
api
.
Vector
)
val
.
copyFromNumpyArray
(
parameters
.
get
(
name
).
flatten
())
self
.
__gradient_machine__
=
gm
self
.
__data_types__
=
topo
.
data_type
()
def
iter_infer
(
self
,
reader
,
reader_dict
=
None
):
if
reader_dict
is
None
:
reader_dict
=
self
.
default_reader_dict
()
feeder
=
DataFeeder
(
self
.
__data_types__
,
reader_dict
)
self
.
__gradient_machine__
.
start
()
for
data_batch
in
reader
():
yield
self
.
__gradient_machine__
.
forwardTest
(
feeder
(
data_batch
))
self
.
__gradient_machine__
.
finish
()
def
iter_infer_field
(
self
,
field
,
**
kwargs
):
for
result
in
self
.
iter_infer
(
**
kwargs
):
yield
[
each_result
[
field
]
for
each_result
in
result
]
def
infer
(
self
,
field
=
'value'
,
**
kwargs
):
retv
=
None
for
result
in
self
.
iter_infer_field
(
field
=
field
,
**
kwargs
):
if
retv
is
None
:
retv
=
[[]]
*
len
(
result
)
for
i
,
item
in
enumerate
(
result
):
retv
[
i
].
append
(
item
)
retv
=
[
numpy
.
concatenate
(
out
)
for
out
in
retv
]
if
len
(
retv
)
==
1
:
return
retv
[
0
]
else
:
return
retv
def
default_reader_dict
(
self
):
reader_dict
=
dict
()
for
i
,
tp
in
enumerate
(
self
.
__data_types__
):
reader_dict
[
tp
[
0
]]
=
i
return
reader_dict
def
infer
(
output
,
parameters
,
reader
,
reader_dict
=
None
,
field
=
'value'
):
inferer
=
Inference
(
output
=
output
,
parameters
=
parameters
)
return
inferer
.
infer
(
field
=
field
,
reader
=
reader
,
reader_dict
=
reader_dict
)
python/paddle/v2/reader/decorator.py
浏览文件 @
e7ca8b27
...
...
@@ -14,13 +14,13 @@
__all__
=
[
'map_readers'
,
'buffered'
,
'compose'
,
'chain'
,
'shuffle'
,
'ComposeNotAligned'
,
'batched'
'ComposeNotAligned'
,
'batched'
,
'firstn'
]
from
Queue
import
Queue
from
threading
import
Thread
import
itertools
import
random
from
Queue
import
Queue
from
threading
import
Thread
def
map_readers
(
func
,
*
readers
):
...
...
@@ -213,3 +213,20 @@ def batched(reader, batch_size):
yield
batch
return
batched_reader
def
firstn
(
reader
,
n
):
"""
Limit the max number of samples that reader could return.
"""
# TODO(yuyang18): Check if just drop the reader, could clean the opened
# resource or not?
def
firstn_reader
():
for
i
,
item
in
enumerate
(
reader
()):
if
i
==
n
:
break
yield
item
return
firstn_reader
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录