提交 e79ad2ea 编写于 作者: D Dang Qingqing

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into quantize_transpiler_update

...@@ -153,6 +153,13 @@ paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'out', 'axis', 'use_ ...@@ -153,6 +153,13 @@ paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'out', 'axis', 'use_
paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0))
paddle.fluid.layers.gaussian_random ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32', False))
paddle.fluid.layers.sampling_id ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32'))
paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32'))
paddle.fluid.layers.sum ArgSpec(args=['x', 'use_mkldnn'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.slice ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.shape ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)) paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)) paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...@@ -224,13 +231,6 @@ paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwarg ...@@ -224,13 +231,6 @@ paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwarg
paddle.fluid.layers.logical_or ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.logical_or ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_xor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.logical_xor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sampling_id ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sum ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.slice ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.shape ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
......
...@@ -150,11 +150,10 @@ else() ...@@ -150,11 +150,10 @@ else()
endif() endif()
if (NOT WIN32) if (NOT WIN32)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS cc_library(parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph graph_viz_pass multi_devices_graph_pass graph build_strategy
multi_devices_graph_print_pass multi_devices_graph_check_pass fast_threaded_ssa_graph_executor)
fast_threaded_ssa_graph_executor fuse_elewise_add_act_pass)
endif() # NOT WIN32 endif() # NOT WIN32
cc_library(prune SRCS prune.cc DEPS framework_proto) cc_library(prune SRCS prune.cc DEPS framework_proto)
......
...@@ -54,3 +54,8 @@ cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_execu ...@@ -54,3 +54,8 @@ cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_execu
# device_context reduce_op_handle ) # device_context reduce_op_handle )
cc_library(fast_threaded_ssa_graph_executor SRCS fast_threaded_ssa_graph_executor.cc cc_library(fast_threaded_ssa_graph_executor SRCS fast_threaded_ssa_graph_executor.cc
DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context) DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context)
cc_library(build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
namespace paddle {
namespace framework {
namespace details {
class ParallelExecutorPassBuilder : public ir::PassBuilder {
public:
explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
: ir::PassBuilder(), strategy_(strategy) {
// Add a graph viz pass to record a graph.
if (!strategy_.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass");
const std::string graph_path = string::Sprintf(
"%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph");
viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
}
// Add op fusion.
if (strategy.fuse_elewise_add_act_ops_) {
auto fuse_elewise_add_act_pass = AppendPass("fuse_elewise_add_act_pass");
// Add a graph viz pass to record a graph.
if (!strategy.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass");
const std::string graph_path = string::Sprintf(
"%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph");
viz_pass->Set<std::string>("graph_viz_path",
new std::string(graph_path));
}
}
// Convert graph to run on multi-devices.
auto multi_devices_pass = AppendPass("multi_devices_pass");
multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
&strategy_);
// Add a graph print pass to record a graph with device info.
if (!strategy_.debug_graphviz_path_.empty()) {
auto multi_devices_print_pass = AppendPass("multi_devices_print_pass");
multi_devices_print_pass->SetNotOwned<const std::string>(
"debug_graphviz_path", &strategy_.debug_graphviz_path_);
multi_devices_print_pass->Set<details::GraphvizSSAGraphPrinter>(
"graph_printer", new details::GraphvizSSAGraphPrinter);
}
// Verify that the graph is correct for multi-device executor.
AppendPass("multi_devices_check_pass");
}
private:
BuildStrategy strategy_;
};
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy()
const {
pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
return pass_builder_;
}
std::unique_ptr<ir::Graph> BuildStrategy::Apply(
const ProgramDesc &main_program, const std::vector<platform::Place> &places,
const std::string &loss_var_name,
const std::unordered_set<std::string> &param_names,
const std::vector<Scope *> &local_scopes,
#ifdef PADDLE_WITH_CUDA
const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const {
#else
const bool use_cuda) const {
#endif
// Create a default one if not initialized by user.
if (!pass_builder_) {
CreatePassesFromStrategy();
}
std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
if (pass->Type() == "multi_devices_pass") {
pass->Erase("places");
pass->SetNotOwned<const std::vector<platform::Place>>("places", &places);
pass->Erase("loss_var_name");
pass->SetNotOwned<const std::string>("loss_var_name", &loss_var_name);
pass->Erase("params");
pass->SetNotOwned<const std::unordered_set<std::string>>("params",
&param_names);
pass->Erase("local_scopes");
pass->SetNotOwned<const std::vector<Scope *>>("local_scopes",
&local_scopes);
#ifdef PADDLE_WITH_CUDA
platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
pass->Erase("nccl_ctxs");
pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
#endif
}
graph = pass->Apply(std::move(graph));
}
return graph;
}
} // namespace details
} // namespace framework
} // namespace paddle
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
...@@ -15,6 +15,17 @@ ...@@ -15,6 +15,17 @@
#pragma once #pragma once
#include <string> #include <string>
#include <vector>
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -57,6 +68,30 @@ struct BuildStrategy { ...@@ -57,6 +68,30 @@ struct BuildStrategy {
bool fuse_elewise_add_act_ops_{false}; bool fuse_elewise_add_act_ops_{false};
bool enable_data_balance_{false}; bool enable_data_balance_{false};
// User normally doesn't need to call this API.
// The PassBuilder allows for more customized insert, remove of passes
// from python side.
// A new PassBuilder is created based on configs defined above and
// passes are owned by the PassBuilder.
std::shared_ptr<ir::PassBuilder> CreatePassesFromStrategy() const;
// Apply the passes built by the pass_builder_. The passes will be
// applied to the Program and output an ir::Graph.
std::unique_ptr<ir::Graph> Apply(
const ProgramDesc &main_program,
const std::vector<platform::Place> &places,
const std::string &loss_var_name,
const std::unordered_set<std::string> &param_names,
const std::vector<Scope *> &local_scopes,
#ifdef PADDLE_WITH_CUDA
const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const;
#else
const bool use_cuda) const;
#endif
private:
mutable std::shared_ptr<ir::PassBuilder> pass_builder_;
}; };
} // namespace details } // namespace details
......
...@@ -20,79 +20,37 @@ namespace paddle { ...@@ -20,79 +20,37 @@ namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
// Change it to thread safe flags if needed. template <class T>
class ThreadUnsafeOwnershipFlags { class COWPtr {
public: public:
explicit ThreadUnsafeOwnershipFlags(bool flag) : flag_(flag) {} typedef std::shared_ptr<T> RefPtr;
ThreadUnsafeOwnershipFlags(const ThreadUnsafeOwnershipFlags& other) = delete;
ThreadUnsafeOwnershipFlags& operator=(
const ThreadUnsafeOwnershipFlags& other) = delete;
ThreadUnsafeOwnershipFlags(ThreadUnsafeOwnershipFlags&& other) = default;
void SetOwnership(bool flag) { flag_ = flag; }
// Invoke the callback if it is not owned.
template <typename Callback>
void AcquireOwnershipOnce(Callback acquire) {
if (!flag_) {
acquire();
flag_ = true;
}
}
private: private:
bool flag_; RefPtr m_sp;
};
// Copy-On-Write pointer.
// It will hold a T* pointer, and only copy once when `MutableData` is invoked.
//
// The template parameter OwnershipFlags should have:
// * a constructor takes a bool. True if own.
// * SetOwnership(bool flag).
// * AcquireOwnershipOnce(Callback). It will invoke the callback if it is not
// owned.
//
// https://en.wikipedia.org/wiki/Copy-on-write
template <typename T, typename OwnershipFlags = ThreadUnsafeOwnershipFlags>
class COWPtr {
public: public:
// Ctor from raw pointer. COWPtr() : m_sp(nullptr) {}
explicit COWPtr(T* ptr) : payload_(ptr), ownership_{true} {} explicit COWPtr(T* t) : m_sp(t) {}
// Move methods. Steal ownership from origin const T& Data() const { return *m_sp; }
COWPtr(COWPtr&& other)
: payload_(other.payload_), ownership_{std::move(other.ownership_)} {}
COWPtr& operator=(COWPtr&& origin) = default;
// Copy methods. Not own payload
COWPtr(const COWPtr& other) : payload_(other.payload_), ownership_{false} {}
COWPtr& operator=(const COWPtr& other) {
payload_ = other.payload_;
ownership_.SetOwnership(false);
return *this;
}
// Access read only data.
const T& Data() const { return *payload_; }
// Access mutable data. If the data is not owned, the data will be copied
// before.
T* MutableData() { T* MutableData() {
ownership_.AcquireOwnershipOnce( DetachIfNotUnique();
[this] { payload_.reset(new T(*payload_)); }); return m_sp.get();
return payload_.get();
} }
private: void DetachIfNotUnique() {
// Actual data pointer. T* tmp = m_sp.get();
std::shared_ptr<T> payload_; if (!(tmp == nullptr || m_sp.unique())) {
Detach();
}
}
// Ownership flag. void Detach() {
OwnershipFlags ownership_; T* tmp = m_sp.get();
m_sp = RefPtr(new T(*tmp));
}
}; };
} // namespace details } // namespace details
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -30,6 +30,14 @@ TEST(COWPtr, all) { ...@@ -30,6 +30,14 @@ TEST(COWPtr, all) {
ASSERT_EQ(ptr2.Data(), 10); ASSERT_EQ(ptr2.Data(), 10);
} }
TEST(COWPtr, change_old) {
COWPtr<int> ptr(new int{0});
COWPtr<int> ptr2 = ptr;
*ptr.MutableData() = 10;
ASSERT_EQ(ptr2.Data(), 0);
ASSERT_EQ(ptr.Data(), 10);
}
} // namespace details } // namespace details
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -41,6 +41,8 @@ cc_library(fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass ...@@ -41,6 +41,8 @@ cc_library(fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass
set(GLOB_PASS_LIB ${PASS_LIBRARY} CACHE INTERNAL "Global PASS library") set(GLOB_PASS_LIB ${PASS_LIBRARY} CACHE INTERNAL "Global PASS library")
cc_library(pass_builder SRCS pass_builder.cc DEPS pass)
cc_test(pass_test SRCS pass_test.cc DEPS graph pass graph_helper) cc_test(pass_test SRCS pass_test.cc DEPS graph pass graph_helper)
cc_test(graph_test SRCS graph_test.cc DEPS graph graph_helper op_registry) cc_test(graph_test SRCS graph_test.cc DEPS graph graph_helper op_registry)
cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_registry) cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_registry)
......
...@@ -12,11 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,11 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/framework/ir/graph_helper.h"
#include <algorithm> #include <algorithm>
#include <deque>
#include <unordered_set> #include <unordered_set>
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
namespace ir { namespace ir {
...@@ -113,6 +113,74 @@ std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList( ...@@ -113,6 +113,74 @@ std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList(
return adj_list; return adj_list;
} }
size_t GraphNum(const Graph &graph) {
std::unordered_set<ir::Node *> nodes = graph.Nodes();
std::unordered_set<ir::Node *> visited_nodes;
visited_nodes.reserve(nodes.size());
std::deque<ir::Node *> q_nodes;
std::vector<std::unordered_set<ir::Node *>> graph_nodes;
std::unordered_set<ir::Node *> g_nodes;
size_t graph_count = 0;
auto traverse_nodes = [&visited_nodes,
&q_nodes](const std::vector<ir::Node *> &nodes) {
std::copy_if(
nodes.begin(), nodes.end(), std::back_inserter(q_nodes),
[&visited_nodes](Node *node) { return !visited_nodes.count(node); });
};
while (visited_nodes.size() != nodes.size()) {
if (!q_nodes.empty()) {
auto cur_node = q_nodes.front();
q_nodes.pop_front();
visited_nodes.insert(cur_node);
g_nodes.insert(cur_node);
traverse_nodes(cur_node->inputs);
traverse_nodes(cur_node->outputs);
} else {
++graph_count;
if (g_nodes.size()) {
graph_nodes.emplace_back(g_nodes);
}
g_nodes.clear();
for (auto &n : nodes) {
if (visited_nodes.count(n) == 0) {
q_nodes.push_back(n);
break;
}
}
}
}
if (g_nodes.size()) {
graph_nodes.emplace_back(g_nodes);
}
if (VLOG_IS_ON(10)) {
VLOG(10) << "graph_num: " << graph_nodes.size();
for (auto &g_n : graph_nodes) {
VLOG(10) << "graph_nodes: " << g_n.size();
if (g_n.size() < 10) {
std::stringstream out;
for (auto &node : g_n) {
out << "\nNode: " << node->Name() << " in [";
for (auto &n : node->inputs) {
out << n->Name() << ", ";
}
out << "], out[";
for (auto &n : node->outputs) {
out << n->Name() << ", ";
}
out << "]";
}
VLOG(10) << out.str();
}
}
}
return graph_count;
}
} // namespace ir } // namespace ir
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -27,6 +27,8 @@ namespace ir { ...@@ -27,6 +27,8 @@ namespace ir {
// Test if the graph contains circle. // Test if the graph contains circle.
bool HasCircle(const Graph &graph); bool HasCircle(const Graph &graph);
size_t GraphNum(const Graph &graph);
// Topology Sort the operations in the graph from inputs to outputs. // Topology Sort the operations in the graph from inputs to outputs.
// `graph` cannot contain circle. // `graph` cannot contain circle.
std::vector<ir::Node *> TopologySortOperations(const Graph &graph); std::vector<ir::Node *> TopologySortOperations(const Graph &graph);
......
...@@ -120,6 +120,97 @@ TEST(GraphHelperTest, Basic) { ...@@ -120,6 +120,97 @@ TEST(GraphHelperTest, Basic) {
ASSERT_EQ(node_map.at("op2"), 1UL); ASSERT_EQ(node_map.at("op2"), 1UL);
ASSERT_TRUE(node_map.at("op3") < node_map.at("op5")); ASSERT_TRUE(node_map.at("op3") < node_map.at("op5"));
} }
void BuildZeroGraph(Graph* g) {}
void BuildOneGraph(Graph* g) {
ir::Node* o1 = g->CreateEmptyNode("op1", Node::Type::kOperation);
ir::Node* o2 = g->CreateEmptyNode("op2", Node::Type::kOperation);
ir::Node* o3 = g->CreateEmptyNode("op3", Node::Type::kOperation);
ir::Node* o4 = g->CreateEmptyNode("op4", Node::Type::kOperation);
ir::Node* o5 = g->CreateEmptyNode("op5", Node::Type::kOperation);
ir::Node* v1 = g->CreateEmptyNode("var1", Node::Type::kVariable);
ir::Node* v2 = g->CreateEmptyNode("var2", Node::Type::kVariable);
ir::Node* v3 = g->CreateEmptyNode("var3", Node::Type::kVariable);
ir::Node* v4 = g->CreateEmptyNode("var4", Node::Type::kVariable);
// o1->v1->o2
o1->outputs.push_back(v1);
o2->inputs.push_back(v1);
v1->inputs.push_back(o1);
v1->outputs.push_back(o2);
// o2->v2->o3
// o2->v2->o4
o2->outputs.push_back(v2);
o3->inputs.push_back(v2);
o4->inputs.push_back(v2);
v2->inputs.push_back(o2);
v2->outputs.push_back(o3);
v2->outputs.push_back(o4);
// o2->v3->o5
o2->outputs.push_back(v3);
o5->inputs.push_back(v3);
v3->inputs.push_back(o2);
v3->outputs.push_back(o5);
// o3-v4->o5
o3->outputs.push_back(v4);
o5->inputs.push_back(v4);
v4->inputs.push_back(o3);
v4->outputs.push_back(o5);
}
void BuildTwoGraphs(Graph* g) {
ir::Node* o1 = g->CreateEmptyNode("op1", Node::Type::kOperation);
ir::Node* o2 = g->CreateEmptyNode("op2", Node::Type::kOperation);
ir::Node* o3 = g->CreateEmptyNode("op3", Node::Type::kOperation);
ir::Node* o4 = g->CreateEmptyNode("op4", Node::Type::kOperation);
ir::Node* o5 = g->CreateEmptyNode("op5", Node::Type::kOperation);
ir::Node* v1 = g->CreateEmptyNode("var1", Node::Type::kVariable);
ir::Node* v2 = g->CreateEmptyNode("var2", Node::Type::kVariable);
ir::Node* v3 = g->CreateEmptyNode("var3", Node::Type::kVariable);
ir::Node* v4 = g->CreateEmptyNode("var4", Node::Type::kVariable);
// o1->v1->o2
o1->outputs.push_back(v1);
o2->inputs.push_back(v1);
v1->inputs.push_back(o1);
v1->outputs.push_back(o2);
// o2->v2->o3
// o2->v2->o4
o2->outputs.push_back(v2);
o3->inputs.push_back(v2);
o4->inputs.push_back(v2);
v2->inputs.push_back(o2);
v2->outputs.push_back(o3);
v2->outputs.push_back(o4);
// o2->v3->o5
// o2->outputs.push_back(v3);
o5->inputs.push_back(v3);
// v3->inputs.push_back(o2);
v3->outputs.push_back(o5);
// o3-v4->o5
o3->outputs.push_back(v4);
// o5->inputs.push_back(v4);
v4->inputs.push_back(o3);
// v4->outputs.push_back(o5);
}
TEST(GraphHelperTest, GraphNum) {
ProgramDesc prog;
Graph g(prog);
BuildZeroGraph(&g);
ASSERT_EQ(GraphNum(g), 0);
Graph g2(prog);
BuildOneGraph(&g2);
ASSERT_EQ(GraphNum(g2), 1);
Graph g3(prog);
BuildTwoGraphs(&g3);
ASSERT_EQ(GraphNum(g3), 2);
}
} // namespace ir } // namespace ir
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -19,7 +19,6 @@ namespace paddle { ...@@ -19,7 +19,6 @@ namespace paddle {
namespace framework { namespace framework {
namespace ir { namespace ir {
std::unique_ptr<Graph> Pass::Apply(std::unique_ptr<Graph> graph) const { std::unique_ptr<Graph> Pass::Apply(std::unique_ptr<Graph> graph) const {
PADDLE_ENFORCE(!applied_, "Pass can only Apply() once.");
PADDLE_ENFORCE(graph.get(), "graph passed to Pass::Apply() cannot be empty."); PADDLE_ENFORCE(graph.get(), "graph passed to Pass::Apply() cannot be empty.");
for (const std::string& attr : required_pass_attrs_) { for (const std::string& attr : required_pass_attrs_) {
PADDLE_ENFORCE(attrs_.find(attr) != attrs_.end(), PADDLE_ENFORCE(attrs_.find(attr) != attrs_.end(),
......
...@@ -42,6 +42,8 @@ class Pass { ...@@ -42,6 +42,8 @@ class Pass {
attr_dels_.clear(); attr_dels_.clear();
} }
std::string Type() const { return type_; }
std::unique_ptr<Graph> Apply(std::unique_ptr<Graph> graph) const; std::unique_ptr<Graph> Apply(std::unique_ptr<Graph> graph) const;
// Get a reference to the attributed previously set. // Get a reference to the attributed previously set.
...@@ -52,6 +54,21 @@ class Pass { ...@@ -52,6 +54,21 @@ class Pass {
return *boost::any_cast<AttrType *>(attrs_.at(attr_name)); return *boost::any_cast<AttrType *>(attrs_.at(attr_name));
} }
bool Has(const std::string &attr_name) const {
return attrs_.find(attr_name) != attrs_.end();
}
void Erase(const std::string &attr_name) {
if (!Has(attr_name)) {
return;
}
if (attr_dels_.find(attr_name) != attr_dels_.end()) {
attr_dels_[attr_name]();
attr_dels_.erase(attr_name);
}
attrs_.erase(attr_name);
}
// Set a pointer to the attribute. Pass takes ownership of the attribute. // Set a pointer to the attribute. Pass takes ownership of the attribute.
template <typename AttrType> template <typename AttrType>
void Set(const std::string &attr_name, AttrType *attr) { void Set(const std::string &attr_name, AttrType *attr) {
...@@ -68,13 +85,15 @@ class Pass { ...@@ -68,13 +85,15 @@ class Pass {
// should delete the attribute. // should delete the attribute.
template <typename AttrType> template <typename AttrType>
void SetNotOwned(const std::string &attr_name, AttrType *attr) { void SetNotOwned(const std::string &attr_name, AttrType *attr) {
PADDLE_ENFORCE(attrs_.count(attr_name) == 0); PADDLE_ENFORCE(attrs_.count(attr_name) == 0, "%s already set in the pass",
attr_name);
attrs_[attr_name] = attr; attrs_[attr_name] = attr;
} }
protected: protected:
virtual std::unique_ptr<Graph> ApplyImpl( virtual std::unique_ptr<Graph> ApplyImpl(std::unique_ptr<Graph> graph) const {
std::unique_ptr<Graph> graph) const = 0; LOG(FATAL) << "Calling virtual Pass not implemented.";
}
private: private:
template <typename PassType> template <typename PassType>
...@@ -89,7 +108,10 @@ class Pass { ...@@ -89,7 +108,10 @@ class Pass {
required_graph_attrs_.insert(attrs.begin(), attrs.end()); required_graph_attrs_.insert(attrs.begin(), attrs.end());
} }
void RegisterType(const std::string &type) { type_ = type; }
mutable bool applied_{false}; mutable bool applied_{false};
std::string type_;
std::unordered_set<std::string> required_pass_attrs_; std::unordered_set<std::string> required_pass_attrs_;
std::unordered_set<std::string> required_graph_attrs_; std::unordered_set<std::string> required_graph_attrs_;
std::map<std::string, boost::any> attrs_; std::map<std::string, boost::any> attrs_;
...@@ -143,10 +165,11 @@ struct PassRegistrar : public Registrar { ...@@ -143,10 +165,11 @@ struct PassRegistrar : public Registrar {
PADDLE_ENFORCE(!PassRegistry::Instance().Has(pass_type), PADDLE_ENFORCE(!PassRegistry::Instance().Has(pass_type),
"'%s' is registered more than once.", pass_type); "'%s' is registered more than once.", pass_type);
PassRegistry::Instance().Insert( PassRegistry::Instance().Insert(
pass_type, [this]() -> std::unique_ptr<Pass> { pass_type, [this, pass_type]() -> std::unique_ptr<Pass> {
std::unique_ptr<Pass> pass(new PassType()); std::unique_ptr<Pass> pass(new PassType());
pass->RegisterRequiredPassAttrs(this->required_pass_attrs_); pass->RegisterRequiredPassAttrs(this->required_pass_attrs_);
pass->RegisterRequiredGraphAttrs(this->required_graph_attrs_); pass->RegisterRequiredGraphAttrs(this->required_graph_attrs_);
pass->RegisterType(pass_type);
return pass; return pass;
}); });
} }
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/pass_builder.h"
namespace paddle {
namespace framework {
namespace ir {
std::shared_ptr<Pass> PassBuilder::AppendPass(const std::string& pass_type) {
auto pass = ir::PassRegistry::Instance().Get(pass_type);
passes_.emplace_back(pass.release());
return passes_.back();
}
void PassBuilder::RemovePass(size_t idx) {
PADDLE_ENFORCE(passes_.size() > idx);
passes_.erase(passes_.begin() + idx);
}
std::shared_ptr<Pass> PassBuilder::InsertPass(size_t idx,
const std::string& pass_type) {
PADDLE_ENFORCE(passes_.size() >= idx);
std::shared_ptr<Pass> pass(
ir::PassRegistry::Instance().Get(pass_type).release());
passes_.insert(passes_.begin() + idx, std::move(pass));
return passes_[idx];
}
} // namespace ir
} // namespace framework
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace ir {
class PassBuilder {
public:
PassBuilder() {}
virtual ~PassBuilder() {}
// Append a new pass to the end.
std::shared_ptr<Pass> AppendPass(const std::string& pass_type);
// Insert a new pass after `idx`.
std::shared_ptr<Pass> InsertPass(size_t idx, const std::string& pass_type);
// Remove a new pass at `idx`.
void RemovePass(size_t idx);
// Returns a list of all passes.
std::vector<std::shared_ptr<Pass>> AllPasses() const { return passes_; }
protected:
std::vector<std::shared_ptr<Pass>> passes_;
};
} // namespace ir
} // namespace framework
} // namespace paddle
...@@ -82,12 +82,10 @@ TEST(PassTest, TestPassAttrCheck) { ...@@ -82,12 +82,10 @@ TEST(PassTest, TestPassAttrCheck) {
ASSERT_EQ(graph->Get<int>("copy_test_pass_attr"), 2); ASSERT_EQ(graph->Get<int>("copy_test_pass_attr"), 2);
ASSERT_EQ(graph->Get<int>("copy_test_graph_attr"), 2); ASSERT_EQ(graph->Get<int>("copy_test_graph_attr"), 2);
try { // Allow apply more than once.
graph = pass->Apply(std::move(graph)); graph.reset(new Graph(prog));
} catch (paddle::platform::EnforceNotMet e) { graph->Set<int>("test_graph_attr", new int);
exception = std::string(e.what()); graph = pass->Apply(std::move(graph));
}
ASSERT_TRUE(exception.find("Pass can only Apply() once") != exception.npos);
pass = PassRegistry::Instance().Get("test_pass"); pass = PassRegistry::Instance().Get("test_pass");
pass->SetNotOwned<int>("test_pass_attr", &val); pass->SetNotOwned<int>("test_pass_attr", &val);
......
...@@ -17,10 +17,13 @@ ...@@ -17,10 +17,13 @@
#include <algorithm> #include <algorithm>
#include <initializer_list> #include <initializer_list>
#include <memory> #include <memory>
#include <mutex> // NOLINT
#include <utility>
#include <vector> #include <vector>
#include "paddle/fluid/framework/details/cow_ptr.h"
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/memory/memcpy.h"
#include "glog/logging.h" #include "glog/logging.h"
...@@ -28,206 +31,436 @@ namespace paddle { ...@@ -28,206 +31,436 @@ namespace paddle {
namespace framework { namespace framework {
#if defined(PADDLE_WITH_CUDA) #if defined(PADDLE_WITH_CUDA)
namespace details {
struct CUDABuffer {
void *data_{nullptr};
size_t size_{0};
platform::CUDAPlace place_;
CUDABuffer() {}
CUDABuffer(platform::Place place, size_t size)
: size_(size), place_(boost::get<platform::CUDAPlace>(place)) {
data_ = memory::Alloc(place_, size);
}
~CUDABuffer() { ClearMemory(); }
CUDABuffer(const CUDABuffer &o) = delete;
CUDABuffer &operator=(const CUDABuffer &o) = delete;
void Resize(platform::Place place, size_t size) {
ClearMemory();
place_ = boost::get<platform::CUDAPlace>(place);
data_ = memory::Alloc(place_, size);
PADDLE_ENFORCE_NOT_NULL(data_);
size_ = size;
}
void Swap(CUDABuffer &o) {
std::swap(data_, o.data_);
std::swap(place_, o.place_);
std::swap(size_, o.size_);
}
private:
void ClearMemory() const {
if (data_ != nullptr) {
memory::Free(place_, data_);
}
}
};
} // namespace details
// Vector<T> implements the std::vector interface, and can get Data or // Vector<T> implements the std::vector interface, and can get Data or
// MutableData from any place. The data will be synced implicitly inside. // MutableData from any place. The data will be synced implicitly inside.
template <typename T> template <typename T>
class Vector { class Vector {
public: public:
using value_type = T; using value_type = T;
using iterator = typename std::vector<T>::iterator;
using const_iterator = typename std::vector<T>::const_iterator;
// Default ctor. Create empty Vector private:
Vector() { InitEmpty(); } // The actual class to implement vector logic
class VectorData {
public:
VectorData() : flag_(kDataInCPU) {}
VectorData(size_t count, const T &value)
: cpu_(count, value), flag_(kDataInCPU) {}
VectorData(std::initializer_list<T> init) : cpu_(init), flag_(kDataInCPU) {}
template <typename U>
explicit VectorData(const std::vector<U> &dat)
: cpu_(dat), flag_(kDataInCPU) {}
~VectorData() {}
VectorData(const VectorData &o) {
o.ImmutableCPU();
cpu_ = o.cpu_;
flag_ = kDataInCPU;
}
// Fill vector with value. The vector size is `count`. VectorData &operator=(const VectorData &o) {
explicit Vector(size_t count, const T &value = T()) { o.ImmutableCPU();
InitEmpty(); cpu_ = o.cpu_;
if (count != 0) { flag_ = kDataInCPU;
resize(count); details::CUDABuffer null;
T *ptr = begin(); gpu_.Swap(null);
for (size_t i = 0; i < count; ++i) { return *this;
ptr[i] = value; }
T &operator[](size_t i) {
MutableCPU();
return cpu_[i];
}
const T &operator[](size_t i) const {
ImmutableCPU();
return cpu_[i];
}
size_t size() const { return cpu_.size(); }
iterator begin() {
MutableCPU();
return cpu_.begin();
}
iterator end() {
MutableCPU();
return cpu_.end();
}
T &front() {
MutableCPU();
return cpu_.front();
}
T &back() {
MutableCPU();
return cpu_.back();
}
const_iterator begin() const {
ImmutableCPU();
return cpu_.begin();
}
const_iterator end() const {
ImmutableCPU();
return cpu_.end();
}
const T &back() const {
ImmutableCPU();
return cpu_.back();
}
T *data() { return &(*this)[0]; }
const T *data() const { return &(*this)[0]; }
const T &front() const {
ImmutableCPU();
return cpu_.front();
}
// assign this from iterator.
// NOTE: the iterator must support `end-begin`
template <typename Iter>
void assign(Iter begin, Iter end) {
MutableCPU();
cpu_.assign(begin, end);
}
// push_back. If the previous capacity is not enough, the memory will
// double.
void push_back(T elem) {
MutableCPU();
cpu_.push_back(elem);
}
// extend a vector by iterator.
// NOTE: the iterator must support end-begin
template <typename It>
void Extend(It begin, It end) {
MutableCPU();
auto out_it = std::back_inserter<std::vector<T>>(this->cpu_);
std::copy(begin, end, out_it);
}
// resize the vector
void resize(size_t size) {
MutableCPU();
cpu_.resize(size);
}
// get cuda ptr. immutable
const T *CUDAData(platform::Place place) const {
PADDLE_ENFORCE(platform::is_gpu_place(place),
"CUDA Data must on CUDA place");
ImmutableCUDA(place);
return reinterpret_cast<T *>(gpu_.data_);
}
// get cuda ptr. mutable
T *CUDAMutableData(platform::Place place) {
const T *ptr = CUDAData(place);
flag_ = kDirty | kDataInCUDA;
return const_cast<T *>(ptr);
}
// clear
void clear() {
cpu_.clear();
flag_ = kDirty | kDataInCPU;
}
size_t capacity() const { return cpu_.capacity(); }
// reserve data
void reserve(size_t size) const { cpu_.reserve(size); }
// implicit cast operator. Vector can be cast to std::vector implicitly.
operator std::vector<T>() const {
ImmutableCPU();
return cpu_;
}
bool operator==(const VectorData &other) const {
ImmutableCPU();
other.ImmutableCPU();
return cpu_ == other.cpu_;
}
std::mutex &Mutex() const { return mtx_; }
std::unique_ptr<platform::CUDAPlace> CUDAPlace() const {
if (gpu_.data_ == nullptr) {
return nullptr;
} else {
return std::unique_ptr<platform::CUDAPlace>(
new platform::CUDAPlace(gpu_.place_));
} }
} }
}
// Ctor with init_list private:
Vector(std::initializer_list<T> init) { enum DataFlag {
if (init.size() == 0) { kDataInCPU = 0x01,
InitEmpty(); kDataInCUDA = 0x02,
} else { // kDirty means the data has been changed in one device.
InitByIter(init.size(), init.begin(), init.end()); kDirty = 0x10
};
void CopyToCPU() const {
// COPY GPU Data To CPU
auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(
platform::Place(gpu_.place_)));
auto stream = dev_ctx->stream();
void *src = gpu_.data_;
void *dst = cpu_.data();
memory::Copy(platform::CPUPlace(), dst, gpu_.place_, src, gpu_.size_,
stream);
dev_ctx->Wait();
}
void MutableCPU() {
if (IsInCUDA() && IsDirty()) {
CopyToCPU();
}
flag_ = kDirty | kDataInCPU;
} }
}
void ImmutableCUDA(platform::Place place) const {
if (IsDirty()) {
if (IsInCPU()) {
CopyCPUDataToCUDA(place);
UnsetFlag(kDirty);
SetFlag(kDataInCUDA);
} else if (IsInCUDA() &&
!(boost::get<platform::CUDAPlace>(place) == gpu_.place_)) {
PADDLE_THROW("This situation should not happen");
// Still dirty
} else {
// Dirty && DataInCUDA && Device is same
// Do nothing
}
} else {
if (!IsInCUDA()) {
// Even data is not dirty. However, data is not in CUDA. Copy data.
CopyCPUDataToCUDA(place);
SetFlag(kDataInCUDA);
} else if (!(boost::get<platform::CUDAPlace>(place) == gpu_.place_)) {
PADDLE_THROW("This situation should not happen.");
} else {
// Not Dirty && DataInCUDA && Device is same
// Do nothing.
}
}
}
void CopyCPUDataToCUDA(const platform::Place &place) const {
void *src = cpu_.data();
gpu_.Resize(place, cpu_.size() * sizeof(T));
void *dst = gpu_.data_;
auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
auto stream = dev_ctx->stream();
memory::Copy(gpu_.place_, dst, platform::CPUPlace(), src, gpu_.size_,
stream);
}
void ImmutableCPU() const {
if (IsDirty() && !IsInCPU()) { // If data has been changed in CUDA, or
// CPU has no data.
CopyToCPU();
UnsetFlag(kDirty);
}
SetFlag(kDataInCPU);
}
void UnsetFlag(int flag) const { flag_ &= ~flag; }
void SetFlag(int flag) const { flag_ |= flag; }
bool IsDirty() const { return flag_ & kDirty; }
bool IsInCUDA() const { return flag_ & kDataInCUDA; }
bool IsInCPU() const { return flag_ & kDataInCPU; }
mutable std::vector<T> cpu_;
mutable details::CUDABuffer gpu_;
mutable int flag_;
mutable std::mutex mtx_;
};
public:
// Default ctor. Create empty Vector
Vector() : m_(new VectorData()) {}
// Fill vector with value. The vector size is `count`.
explicit Vector(size_t count, const T &value = T())
: m_(new VectorData(count, value)) {}
// Ctor with init_list
Vector(std::initializer_list<T> init) : m_(new VectorData(init)) {}
// implicit cast from std::vector. // implicit cast from std::vector.
template <typename U> template <typename U>
Vector(const std::vector<U> &dat) { // NOLINT Vector(const std::vector<U> &dat) : m_(new VectorData(dat)) { // NOLINT
if (dat.size() == 0) {
InitEmpty();
} else {
InitByIter(dat.size(), dat.begin(), dat.end());
}
} }
// Copy ctor // Copy ctor
Vector(const Vector<T> &other) { this->operator=(other); } Vector(const Vector<T> &other) { m_ = other.m_; }
// Copy operator // Copy operator
Vector<T> &operator=(const Vector<T> &other) { Vector<T> &operator=(const Vector<T> &other) {
if (other.size() != 0) { m_ = other.m_;
this->InitByIter(other.size(), other.begin(), other.end());
} else {
InitEmpty();
}
return *this; return *this;
} }
// Move ctor // Move ctor
Vector(Vector<T> &&other) { Vector(Vector<T> &&other) { m_ = std::move(other.m_); }
this->size_ = other.size_;
this->flag_ = other.flag_;
if (other.cuda_vec_.memory_size()) {
this->cuda_vec_.ShareDataWith(other.cuda_vec_);
}
if (other.cpu_vec_.memory_size()) {
this->cpu_vec_.ShareDataWith(other.cpu_vec_);
}
}
// CPU data access method. Mutable. // CPU data access method. Mutable.
T &operator[](size_t i) { T &operator[](size_t i) { return (*m_.MutableData())[i]; }
MutableCPU();
return const_cast<T *>(cpu_vec_.data<T>())[i];
}
// CPU data access method. Immutable. // CPU data access method. Immutable.
const T &operator[](size_t i) const { const T &operator[](size_t i) const { return m_.Data()[i]; }
ImmutableCPU();
return cpu_vec_.data<T>()[i];
}
// std::vector iterator methods. Based on CPU data access method // std::vector iterator methods. Based on CPU data access method
size_t size() const { return size_; } size_t size() const { return m_.Data().size(); }
T *begin() { return capacity() == 0 ? &EmptyDummy() : &this->operator[](0); } iterator begin() { return m_.MutableData()->begin(); }
T *end() { iterator end() { return m_.MutableData()->end(); }
return capacity() == 0 ? &EmptyDummy() : &this->operator[](size());
}
T &front() { return *begin(); } T &front() { return m_.MutableData()->front(); }
T &back() { T &back() { return m_.MutableData()->back(); }
auto it = end();
--it;
return *it;
}
const T *begin() const { const_iterator begin() const { return m_.Data().begin(); }
return capacity() == 0 ? &EmptyDummy() : &this->operator[](0);
}
const T *end() const { const_iterator end() const { return m_.Data().end(); }
return capacity() == 0 ? &EmptyDummy() : &this->operator[](size());
}
const T *cbegin() const { return begin(); } const_iterator cbegin() const { return begin(); }
const T *cend() const { return end(); } const_iterator cend() const { return end(); }
const T &back() const { const T &back() const { return m_.Data().back(); }
auto it = end();
--it;
return *it;
}
T *data() { return begin(); } T *data() { return m_.MutableData()->data(); }
const T *data() const { return begin(); } const T *data() const { return m_.Data().data(); }
const T &front() const { return *begin(); } const T &front() const { return m_.Data().front(); }
// end of std::vector iterator methods // end of std::vector iterator methods
// assign this from iterator. // assign this from iterator.
// NOTE: the iterator must support `end-begin` // NOTE: the iterator must support `end-begin`
template <typename Iter> template <typename Iter>
void assign(Iter begin, Iter end) { void assign(Iter begin, Iter end) {
InitByIter(end - begin, begin, end); m_.MutableData()->assign(begin, end);
} }
// push_back. If the previous capacity is not enough, the memory will // push_back. If the previous capacity is not enough, the memory will
// double. // double.
void push_back(T elem) { void push_back(T elem) { m_.MutableData()->push_back(elem); }
if (size_ + 1 > capacity()) {
reserve((size_ + 1) << 1);
}
*end() = elem;
++size_;
}
// extend a vector by iterator. // extend a vector by iterator.
// NOTE: the iterator must support end-begin // NOTE: the iterator must support end-begin
template <typename It> template <typename It>
void Extend(It begin, It end) { void Extend(It begin, It end) {
size_t pre_size = size_; m_.MutableData()->Extend(begin, end);
resize(pre_size + (end - begin));
T *ptr = this->begin() + pre_size;
for (; begin < end; ++begin, ++ptr) {
*ptr = *begin;
}
} }
// resize the vector // resize the vector
void resize(size_t size) { void resize(size_t size) {
if (size + 1 <= capacity()) { if (m_.Data().size() != size) {
size_ = size; m_.MutableData()->resize(size);
} else {
MutableCPU();
Tensor cpu_tensor;
platform::Place cpu = platform::CPUPlace();
T *ptr = cpu_tensor.mutable_data<T>(
framework::make_ddim({static_cast<int64_t>(size)}), cpu);
const T *old_ptr =
cpu_vec_.memory_size() == 0 ? nullptr : cpu_vec_.data<T>();
if (old_ptr != nullptr) {
std::copy(old_ptr, old_ptr + size_, ptr);
}
size_ = size;
cpu_vec_.ShareDataWith(cpu_tensor);
} }
} }
// get cuda ptr. immutable // get cuda ptr. immutable
const T *CUDAData(platform::Place place) const { const T *CUDAData(platform::Place place) const {
PADDLE_ENFORCE(platform::is_gpu_place(place), {
"CUDA Data must on CUDA place"); auto &mtx = m_.Data().Mutex();
ImmutableCUDA(place); std::lock_guard<std::mutex> guard(mtx);
return cuda_vec_.data<T>(); auto cuda_place = m_.Data().CUDAPlace();
if (cuda_place == nullptr ||
*cuda_place == boost::get<platform::CUDAPlace>(place)) {
return m_.Data().CUDAData(place);
}
}
// If m_ contains CUDAData in a different place. Detach manually.
m_.Detach();
return CUDAData(place);
} }
// get cuda ptr. mutable // get cuda ptr. mutable
T *CUDAMutableData(platform::Place place) { T *CUDAMutableData(platform::Place place) {
const T *ptr = CUDAData(place); {
flag_ = kDirty | kDataInCUDA; auto &mtx = m_.Data().Mutex();
return const_cast<T *>(ptr); std::lock_guard<std::mutex> guard(mtx);
auto cuda_place = m_.Data().CUDAPlace();
if (cuda_place == nullptr ||
*cuda_place == boost::get<platform::CUDAPlace>(place)) {
return m_.MutableData()->CUDAMutableData(place);
}
}
// If m_ contains CUDAData in a different place. Detach manually.
m_.Detach();
return CUDAMutableData(place);
} }
// clear // clear
void clear() { void clear() { m_.MutableData()->clear(); }
size_ = 0;
flag_ = kDirty | kDataInCPU;
}
size_t capacity() const { size_t capacity() const { return m_.Data().capacity(); }
return cpu_vec_.memory_size() / SizeOfType(typeid(T));
}
// reserve data // reserve data
void reserve(size_t size) { void reserve(size_t size) { m_.Data().reserve(size); }
size_t pre_size = size_;
resize(size);
resize(pre_size);
}
// the unify method to access CPU or CUDA data. immutable. // the unify method to access CPU or CUDA data. immutable.
const T *Data(platform::Place place) const { const T *Data(platform::Place place) const {
...@@ -248,12 +481,7 @@ class Vector { ...@@ -248,12 +481,7 @@ class Vector {
} }
// implicit cast operator. Vector can be cast to std::vector implicitly. // implicit cast operator. Vector can be cast to std::vector implicitly.
operator std::vector<T>() const { operator std::vector<T>() const { return m_.Data(); }
std::vector<T> result;
result.resize(size());
std::copy(begin(), end(), result.begin());
return result;
}
bool operator==(const Vector<T> &other) const { bool operator==(const Vector<T> &other) const {
if (size() != other.size()) return false; if (size() != other.size()) return false;
...@@ -267,118 +495,11 @@ class Vector { ...@@ -267,118 +495,11 @@ class Vector {
return true; return true;
} }
private: const void *Handle() const { return &m_.Data(); }
void InitEmpty() {
size_ = 0;
flag_ = kDataInCPU;
}
template <typename Iter>
void InitByIter(size_t size, Iter begin, Iter end) {
platform::Place cpu = platform::CPUPlace();
T *ptr = this->cpu_vec_.template mutable_data<T>(
framework::make_ddim({static_cast<int64_t>(size)}), cpu);
for (size_t i = 0; i < size; ++i) {
*ptr++ = *begin++;
}
flag_ = kDataInCPU | kDirty;
size_ = size;
}
enum DataFlag {
kDataInCPU = 0x01,
kDataInCUDA = 0x02,
// kDirty means the data has been changed in one device.
kDirty = 0x10
};
void CopyToCPU() const {
// COPY GPU Data To CPU
TensorCopy(cuda_vec_, platform::CPUPlace(), &cpu_vec_);
WaitPlace(cuda_vec_.place());
}
void MutableCPU() {
if (IsInCUDA() && IsDirty()) {
CopyToCPU();
}
flag_ = kDirty | kDataInCPU;
}
void ImmutableCUDA(platform::Place place) const {
if (IsDirty()) {
if (IsInCPU()) {
TensorCopy(cpu_vec_, boost::get<platform::CUDAPlace>(place),
&cuda_vec_);
WaitPlace(place);
UnsetFlag(kDirty);
SetFlag(kDataInCUDA);
} else if (IsInCUDA() && !(place == cuda_vec_.place())) {
framework::Tensor tmp;
TensorCopy(cuda_vec_, boost::get<platform::CUDAPlace>(place), &tmp);
WaitPlace(cuda_vec_.place());
cuda_vec_.ShareDataWith(tmp);
// Still dirty
} else {
// Dirty && DataInCUDA && Device is same
// Do nothing
}
} else {
if (!IsInCUDA()) {
// Even data is not dirty. However, data is not in CUDA. Copy data.
TensorCopy(cpu_vec_, boost::get<platform::CUDAPlace>(place),
&cuda_vec_);
WaitPlace(place);
SetFlag(kDataInCUDA);
} else if (!(place == cuda_vec_.place())) {
framework::Tensor tmp;
WaitPlace(cuda_vec_.place());
TensorCopy(cuda_vec_, boost::get<platform::CUDAPlace>(place), &tmp);
WaitPlace(cuda_vec_.place());
WaitPlace(place);
cuda_vec_.ShareDataWith(tmp);
} else {
// Not Dirty && DataInCUDA && Device is same
// Do nothing.
}
}
}
void ImmutableCPU() const {
if (IsDirty() &&
!IsInCPU()) { // If data has been changed in CUDA, or CPU has no data.
CopyToCPU();
UnsetFlag(kDirty);
}
SetFlag(kDataInCPU);
}
void UnsetFlag(int flag) const { flag_ &= ~flag; }
void SetFlag(int flag) const { flag_ |= flag; }
bool IsDirty() const { return flag_ & kDirty; } private:
// Vector is an COW object.
bool IsInCUDA() const { return flag_ & kDataInCUDA; } mutable details::COWPtr<VectorData> m_;
bool IsInCPU() const { return flag_ & kDataInCPU; }
static void WaitPlace(const platform::Place place) {
if (platform::is_gpu_place(place)) {
platform::DeviceContextPool::Instance()
.Get(boost::get<platform::CUDAPlace>(place))
->Wait();
}
}
static T &EmptyDummy() {
static T dummy = T();
return dummy;
}
mutable int flag_;
mutable Tensor cpu_vec_;
mutable Tensor cuda_vec_;
size_t size_;
}; };
#else // PADDLE_WITH_CUDA #else // PADDLE_WITH_CUDA
......
...@@ -13,21 +13,19 @@ See the License for the specific language governing permissions and ...@@ -13,21 +13,19 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h" #include "paddle/fluid/framework/parallel_executor.h"
#include <string> #include <string>
#include <tuple> #include <tuple>
#include <vector> #include <vector>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h" #include "paddle/fluid/platform/nccl_helper.h"
#endif #endif
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h" #include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h" #include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h" #include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h" #include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler.h"
...@@ -35,80 +33,6 @@ limitations under the License. */ ...@@ -35,80 +33,6 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
std::unique_ptr<ir::Graph> ApplyParallelExecutorPass(
const ProgramDesc &main_program, const std::vector<platform::Place> &places,
const std::string &loss_var_name,
const std::unordered_set<std::string> &param_names,
const std::vector<Scope *> &local_scopes, const bool use_cuda,
#ifdef PADDLE_WITH_CUDA
const BuildStrategy &strategy, platform::NCCLContextMap *nccl_ctxs) {
#else
const BuildStrategy &strategy) {
#endif
// Convert the program to graph.
std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
// Apply a graph viz pass to record a graph.
if (!strategy.debug_graphviz_path_.empty()) {
auto viz_pass = ir::PassRegistry::Instance().Get("graph_viz_pass");
const std::string graph_path = string::Sprintf(
"%s%s", strategy.debug_graphviz_path_.c_str(), "_original_graph");
viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
graph = viz_pass->Apply(std::move(graph));
}
// Apply op fusion.
if (strategy.fuse_elewise_add_act_ops_) {
auto fuse_elewise_add_act_pass =
ir::PassRegistry::Instance().Get("fuse_elewise_add_act_pass");
graph = fuse_elewise_add_act_pass->Apply(std::move(graph));
// Apply a graph viz pass to record a graph.
if (!strategy.debug_graphviz_path_.empty()) {
auto viz_pass = ir::PassRegistry::Instance().Get("graph_viz_pass");
const std::string graph_path = string::Sprintf(
"%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph");
viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
graph = viz_pass->Apply(std::move(graph));
}
}
// Convert graph to run on multi-devices.
auto multi_devices_pass =
ir::PassRegistry::Instance().Get("multi_devices_pass");
multi_devices_pass->SetNotOwned<const std::vector<platform::Place>>("places",
&places);
multi_devices_pass->SetNotOwned<const std::string>("loss_var_name",
&loss_var_name);
multi_devices_pass->SetNotOwned<const std::unordered_set<std::string>>(
"params", &param_names);
multi_devices_pass->SetNotOwned<const std::vector<Scope *>>("local_scopes",
&local_scopes);
multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy", &strategy);
#ifdef PADDLE_WITH_CUDA
platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
multi_devices_pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
#endif
graph = multi_devices_pass->Apply(std::move(graph));
// Apply a graph print pass to record a graph with device info.
if (!strategy.debug_graphviz_path_.empty()) {
auto multi_devices_print_pass =
ir::PassRegistry::Instance().Get("multi_devices_print_pass");
multi_devices_print_pass->SetNotOwned<const std::string>(
"debug_graphviz_path", &strategy.debug_graphviz_path_);
multi_devices_print_pass->Set<details::GraphvizSSAGraphPrinter>(
"graph_printer", new details::GraphvizSSAGraphPrinter);
graph = multi_devices_print_pass->Apply(std::move(graph));
}
// Verify that the graph is correct for multi-device executor.
auto multi_devices_check_pass =
ir::PassRegistry::Instance().Get("multi_devices_check_pass");
graph = multi_devices_check_pass->Apply(std::move(graph));
return graph;
}
class ParallelExecutorPrivate { class ParallelExecutorPrivate {
public: public:
explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places) explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
...@@ -199,10 +123,9 @@ ParallelExecutor::ParallelExecutor( ...@@ -199,10 +123,9 @@ ParallelExecutor::ParallelExecutor(
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert // Step 3. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp // ncclOp
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
std::unique_ptr<ir::Graph> graph = ApplyParallelExecutorPass( std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
main_program, member_->places_, loss_var_name, params, main_program, member_->places_, loss_var_name, params,
member_->local_scopes_, member_->use_cuda_, build_strategy, member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
member_->nccl_ctxs_.get());
auto max_memory_size = GetEagerDeletionThreshold(); auto max_memory_size = GetEagerDeletionThreshold();
if (max_memory_size >= 0) { if (max_memory_size >= 0) {
...@@ -228,11 +151,17 @@ ParallelExecutor::ParallelExecutor( ...@@ -228,11 +151,17 @@ ParallelExecutor::ParallelExecutor(
} }
} }
#else #else
std::unique_ptr<ir::Graph> graph = ApplyParallelExecutorPass( std::unique_ptr<ir::Graph> graph =
main_program, member_->places_, loss_var_name, params, build_strategy.Apply(main_program, member_->places_, loss_var_name,
member_->local_scopes_, member_->use_cuda_, build_strategy); params, member_->local_scopes_, member_->use_cuda_);
#endif #endif
// If the loss_var_name is given, the number of graph should be only one.
if (loss_var_name.size()) {
PADDLE_ENFORCE_EQ(ir::GraphNum(*graph), 1,
"The number of graph should be only one");
}
if (exec_strategy.type_ == ExecutionStrategy::kDefault) { if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
member_->executor_.reset(new details::ThreadedSSAGraphExecutor( member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
exec_strategy, member_->local_scopes_, places, std::move(graph))); exec_strategy, member_->local_scopes_, places, std::move(graph)));
...@@ -373,12 +302,6 @@ ParallelExecutor::~ParallelExecutor() { ...@@ -373,12 +302,6 @@ ParallelExecutor::~ParallelExecutor() {
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass); USE_PASS(reference_count_pass);
#endif #endif
...@@ -14,14 +14,14 @@ limitations under the License. */ ...@@ -14,14 +14,14 @@ limitations under the License. */
#pragma once #pragma once
#include <paddle/fluid/framework/details/build_strategy.h>
#include <atomic> #include <atomic>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include <vector> #include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/execution_strategy.h" #include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/program_desc.h"
......
...@@ -76,8 +76,8 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> { ...@@ -76,8 +76,8 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
auto ap_type = GetAPType(ctx.Attr<std::string>("ap_type")); auto ap_type = GetAPType(ctx.Attr<std::string>("ap_type"));
int class_num = ctx.Attr<int>("class_num"); int class_num = ctx.Attr<int>("class_num");
auto label_lod = in_label->lod(); auto& label_lod = in_label->lod();
auto detect_lod = in_detect->lod(); auto& detect_lod = in_detect->lod();
PADDLE_ENFORCE_EQ(label_lod.size(), 1UL, PADDLE_ENFORCE_EQ(label_lod.size(), 1UL,
"Only support one level sequence now."); "Only support one level sequence now.");
PADDLE_ENFORCE_EQ(label_lod[0].size(), detect_lod[0].size(), PADDLE_ENFORCE_EQ(label_lod[0].size(), detect_lod[0].size(),
...@@ -166,11 +166,11 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> { ...@@ -166,11 +166,11 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
auto labels = framework::EigenTensor<T, 2>::From(input_label); auto labels = framework::EigenTensor<T, 2>::From(input_label);
auto detect = framework::EigenTensor<T, 2>::From(input_detect); auto detect = framework::EigenTensor<T, 2>::From(input_detect);
auto label_lod = input_label.lod(); auto& label_lod = input_label.lod();
auto detect_lod = input_detect.lod(); auto& detect_lod = input_detect.lod();
int batch_size = label_lod[0].size() - 1; int batch_size = label_lod[0].size() - 1;
auto label_index = label_lod[0]; auto& label_index = label_lod[0];
for (int n = 0; n < batch_size; ++n) { for (int n = 0; n < batch_size; ++n) {
std::map<int, std::vector<Box>> boxes; std::map<int, std::vector<Box>> boxes;
...@@ -274,7 +274,6 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> { ...@@ -274,7 +274,6 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
output_true_pos->set_lod(true_pos_lod); output_true_pos->set_lod(true_pos_lod);
output_false_pos->set_lod(false_pos_lod); output_false_pos->set_lod(false_pos_lod);
return;
} }
void GetInputPos(const framework::Tensor& input_pos_count, void GetInputPos(const framework::Tensor& input_pos_count,
...@@ -292,7 +291,7 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> { ...@@ -292,7 +291,7 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
auto SetData = [](const framework::LoDTensor& pos_tensor, auto SetData = [](const framework::LoDTensor& pos_tensor,
std::map<int, std::vector<std::pair<T, int>>>& pos) { std::map<int, std::vector<std::pair<T, int>>>& pos) {
const T* pos_data = pos_tensor.data<T>(); const T* pos_data = pos_tensor.data<T>();
auto pos_data_lod = pos_tensor.lod()[0]; auto& pos_data_lod = pos_tensor.lod()[0];
for (size_t i = 0; i < pos_data_lod.size() - 1; ++i) { for (size_t i = 0; i < pos_data_lod.size() - 1; ++i) {
for (size_t j = pos_data_lod[i]; j < pos_data_lod[i + 1]; ++j) { for (size_t j = pos_data_lod[i]; j < pos_data_lod[i + 1]; ++j) {
T score = pos_data[j * 2]; T score = pos_data[j * 2];
...@@ -317,20 +316,23 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> { ...@@ -317,20 +316,23 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
std::map<int, std::vector<std::pair<T, int>>>* false_pos) const { std::map<int, std::vector<std::pair<T, int>>>* false_pos) const {
int batch_size = gt_boxes.size(); int batch_size = gt_boxes.size();
for (int n = 0; n < batch_size; ++n) { for (int n = 0; n < batch_size; ++n) {
auto image_gt_boxes = gt_boxes[n]; auto& image_gt_boxes = gt_boxes[n];
for (auto it = image_gt_boxes.begin(); it != image_gt_boxes.end(); ++it) { for (auto& image_gt_box : image_gt_boxes) {
size_t count = 0; size_t count = 0;
auto labeled_bboxes = it->second; auto& labeled_bboxes = image_gt_box.second;
if (evaluate_difficult) { if (evaluate_difficult) {
count = labeled_bboxes.size(); count = labeled_bboxes.size();
} else { } else {
for (size_t i = 0; i < labeled_bboxes.size(); ++i) for (auto& box : labeled_bboxes) {
if (!(labeled_bboxes[i].is_difficult)) ++count; if (!box.is_difficult) {
++count;
}
}
} }
if (count == 0) { if (count == 0) {
continue; continue;
} }
int label = it->first; int label = image_gt_box.first;
if (label_pos_count->find(label) == label_pos_count->end()) { if (label_pos_count->find(label) == label_pos_count->end()) {
(*label_pos_count)[label] = count; (*label_pos_count)[label] = count;
} else { } else {
......
...@@ -50,7 +50,7 @@ class ExtractRowsOp : public framework::OperatorBase { ...@@ -50,7 +50,7 @@ class ExtractRowsOp : public framework::OperatorBase {
auto &in = scope.FindVar(Input("X"))->Get<framework::SelectedRows>(); auto &in = scope.FindVar(Input("X"))->Get<framework::SelectedRows>();
auto out = scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>(); auto out = scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
auto in_rows = in.rows(); auto &in_rows = in.rows();
auto out_dim = framework::make_ddim( auto out_dim = framework::make_ddim(
std::vector<int64_t>{static_cast<int64_t>(in_rows.size()), 1}); std::vector<int64_t>{static_cast<int64_t>(in_rows.size()), 1});
auto dst_ptr = out->mutable_data<int64_t>(out_dim, in.place()); auto dst_ptr = out->mutable_data<int64_t>(out_dim, in.place());
......
...@@ -127,10 +127,8 @@ class LookupTableGradCUDAKernel : public framework::OpKernel<T> { ...@@ -127,10 +127,8 @@ class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace()); auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace());
// TODO(yuyang18): Strange code here. // TODO(yuyang18): Strange code here.
memory::Copy(platform::CPUPlace(), memory::Copy(gpu_place, new_rows.CUDAMutableData(context.GetPlace()),
new_rows.CUDAMutableData(context.GetPlace()), gpu_place, gpu_place, ids_data, ids_num * sizeof(int64_t), stream);
ids_data, ids_num * sizeof(int64_t), stream);
d_table->set_rows(new_rows); d_table->set_rows(new_rows);
auto *d_table_value = d_table->mutable_value(); auto *d_table_value = d_table->mutable_value();
......
...@@ -60,11 +60,9 @@ struct SelectedRowsAdd<platform::CUDADeviceContext, T> { ...@@ -60,11 +60,9 @@ struct SelectedRowsAdd<platform::CUDADeviceContext, T> {
auto out_place = context.GetPlace(); auto out_place = context.GetPlace();
PADDLE_ENFORCE(platform::is_gpu_place(out_place)); PADDLE_ENFORCE(platform::is_gpu_place(out_place));
memory::Copy( memory::Copy(boost::get<platform::CUDAPlace>(out_place), out_data,
boost::get<platform::CUDAPlace>(out_place), out_data, boost::get<platform::CUDAPlace>(in1_place), in1_data,
boost::get<platform::CUDAPlace>(in1_place), in1_data, in1_value.numel() * sizeof(T), context.stream());
in1_value.numel() * sizeof(T),
reinterpret_cast<const platform::CUDADeviceContext&>(context).stream());
auto* in2_data = in2_value.data<T>(); auto* in2_data = in2_value.data<T>();
memory::Copy(boost::get<platform::CUDAPlace>(out_place), memory::Copy(boost::get<platform::CUDAPlace>(out_place),
...@@ -148,7 +146,7 @@ struct SelectedRowsAddTo<platform::CUDADeviceContext, T> { ...@@ -148,7 +146,7 @@ struct SelectedRowsAddTo<platform::CUDADeviceContext, T> {
auto in1_height = input1.height(); auto in1_height = input1.height();
PADDLE_ENFORCE_EQ(in1_height, input2->height()); PADDLE_ENFORCE_EQ(in1_height, input2->height());
framework::Vector<int64_t> in1_rows(input1.rows()); auto& in1_rows = input1.rows();
auto& in2_rows = *(input2->mutable_rows()); auto& in2_rows = *(input2->mutable_rows());
auto& in1_value = input1.value(); auto& in1_value = input1.value();
......
...@@ -53,15 +53,16 @@ class SamplingIdOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -53,15 +53,16 @@ class SamplingIdOpMaker : public framework::OpProtoAndCheckerMaker {
SamplingId Operator. SamplingId Operator.
A layer for sampling id from multinomial distribution from the A layer for sampling id from multinomial distribution from the
input. Sampling one id for one sample.)DOC"); input. Sampling one id for one sample.)DOC");
AddAttr<float>("min", "Minimum value of random. [default 0.0].") AddAttr<float>("min", "Minimum value of random. (float, default 0.0).")
.SetDefault(0.0f); .SetDefault(0.0f);
AddAttr<float>("max", "Maximun value of random. [default 1.0].") AddAttr<float>("max", "Maximun value of random. (float, default 1.0).")
.SetDefault(1.0f); .SetDefault(1.0f);
AddAttr<int>("seed", AddAttr<int>(
"Random seed used for the random number engine. " "seed",
"0 means use a seed generated by the system." "Random seed used for the random number engine. "
"Note that if seed is not 0, this operator will always " "0 means use a seed generated by the system."
"generate the same random numbers every time. [default 0].") "Note that if seed is not 0, this operator will always "
"generate the same random numbers every time. (int, default 0).")
.SetDefault(0); .SetDefault(0);
} }
}; };
......
...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#define EIGEN_USE_GPU #include <algorithm>
#include "paddle/fluid/operators/sgd_op.h" #include "paddle/fluid/operators/sgd_op.h"
#include "paddle/fluid/platform/cuda_primitives.h" #include "paddle/fluid/platform/cuda_primitives.h"
...@@ -33,22 +33,21 @@ __global__ void SGDKernel(const T* g, const T* p, const T* learning_rate, ...@@ -33,22 +33,21 @@ __global__ void SGDKernel(const T* g, const T* p, const T* learning_rate,
} }
} }
template <typename T, int block_size> template <typename T>
__global__ void SparseSGDFunctorKernel(const T* selected_rows, __global__ void SparseSGDFunctorKernel(const T* selected_rows,
const int64_t* rows, const int64_t* rows,
const T* learning_rate, T* tensor_out, const T* learning_rate, T* tensor_out,
int64_t row_numel) { int64_t row_numel, int64_t limit) {
const int ty = blockIdx.y; for (int64_t i = blockIdx.x; i < limit; i += gridDim.x) {
int tid = threadIdx.x; const T* selected_rows_ptr = selected_rows + i * row_numel;
T* tensor_out_ptr = tensor_out + rows[i] * row_numel;
selected_rows += ty * row_numel; for (int64_t index = threadIdx.x; index < row_numel; index += blockDim.x) {
tensor_out += rows[ty] * row_numel; // Since index in rows of SelectedRows can be duplicate, we have to use
// Atomic Operation to avoid concurrent write error.
for (int index = tid; index < row_numel; index += block_size) { paddle::platform::CudaAtomicAdd(
// Since index in rows of SelectedRows can be duplicate, we have to use tensor_out_ptr + index,
// Atomic Operation to avoid concurrent write error. -1.0 * learning_rate[0] * selected_rows_ptr[index]);
paddle::platform::CudaAtomicAdd( }
tensor_out + index, -1.0 * learning_rate[0] * selected_rows[index]);
} }
} }
} // namespace } // namespace
...@@ -89,7 +88,7 @@ class SGDOpCUDAKernel : public framework::OpKernel<T> { ...@@ -89,7 +88,7 @@ class SGDOpCUDAKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ(in_height, out_dims[0]); PADDLE_ENFORCE_EQ(in_height, out_dims[0]);
auto& in_value = grad->value(); auto& in_value = grad->value();
framework::Vector<int64_t> in_rows(grad->rows()); auto& in_rows = grad->rows();
int64_t in_row_numel = in_value.numel() / in_rows.size(); int64_t in_row_numel = in_value.numel() / in_rows.size();
PADDLE_ENFORCE_EQ(in_row_numel, param_out->numel() / in_height); PADDLE_ENFORCE_EQ(in_row_numel, param_out->numel() / in_height);
...@@ -97,13 +96,15 @@ class SGDOpCUDAKernel : public framework::OpKernel<T> { ...@@ -97,13 +96,15 @@ class SGDOpCUDAKernel : public framework::OpKernel<T> {
auto* in_data = in_value.data<T>(); auto* in_data = in_value.data<T>();
auto* out_data = param_out->data<T>(); auto* out_data = param_out->data<T>();
const int block_size = 256; const int kThreadsPerBlock = 256;
dim3 threads(block_size, 1); int thread_x = kThreadsPerBlock;
dim3 grid(1, in_rows.size()); int max_threads = ctx.cuda_device_context().GetMaxPhysicalThreadCount();
SparseSGDFunctorKernel< int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);
T, 256><<<grid, threads, 0, ctx.cuda_device_context().stream()>>>(
SparseSGDFunctorKernel<<<max_blocks, thread_x, 0,
ctx.cuda_device_context().stream()>>>(
in_data, in_rows.CUDAData(ctx.GetPlace()), learning_rate->data<T>(), in_data, in_rows.CUDAData(ctx.GetPlace()), learning_rate->data<T>(),
out_data, in_row_numel); out_data, in_row_numel, in_rows.size());
} else { } else {
PADDLE_THROW("Unsupported Variable Type of Grad"); PADDLE_THROW("Unsupported Variable Type of Grad");
......
...@@ -124,7 +124,6 @@ class SumKernel : public framework::OpKernel<T> { ...@@ -124,7 +124,6 @@ class SumKernel : public framework::OpKernel<T> {
out_value->Resize(framework::make_ddim(in_dim)); out_value->Resize(framework::make_ddim(in_dim));
out_value->mutable_data<T>(context.GetPlace()); out_value->mutable_data<T>(context.GetPlace());
// if all the input sparse vars are empty, no need to // if all the input sparse vars are empty, no need to
// merge these vars. // merge these vars.
if (first_dim == 0UL) { if (first_dim == 0UL) {
......
set(PYBIND_DEPS pybind python proto_desc memory executor prune feed_fetch_method) set(PYBIND_DEPS pybind python proto_desc memory executor prune feed_fetch_method pass_builder)
set(PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc) set(PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc)
if(NOT WIN32) if(NOT WIN32)
list(APPEND PYBIND_DEPS parallel_executor profiler) list(APPEND PYBIND_DEPS parallel_executor profiler)
......
...@@ -25,6 +25,7 @@ limitations under the License. */ ...@@ -25,6 +25,7 @@ limitations under the License. */
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/lod_tensor_array.h"
...@@ -595,6 +596,29 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -595,6 +596,29 @@ All parameter, weight, gradient are variables in Paddle.
m.def("is_profiler_enabled", platform::IsProfileEnabled); m.def("is_profiler_enabled", platform::IsProfileEnabled);
m.def("reset_profiler", platform::ResetProfiler); m.def("reset_profiler", platform::ResetProfiler);
py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
pass.def(py::init())
.def("set_str", [](ir::Pass &self, const std::string &name,
const std::string &attr) {
self.Set<std::string>(name, new std::string(attr));
});
py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
m, "PassBuilder");
pb.def(py::init())
.def("append_pass",
[](ir::PassBuilder &self,
const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
return self.AppendPass(pass_type);
})
.def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
.def("insert_pass",
[](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
return self.InsertPass(idx, pass_type);
})
.def("remove_pass",
[](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });
// -- python binds for parallel executor. // -- python binds for parallel executor.
py::class_<ParallelExecutor> pe(m, "ParallelExecutor"); py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy"); py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy");
...@@ -677,7 +701,11 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -677,7 +701,11 @@ All parameter, weight, gradient are variables in Paddle.
}, },
[](BuildStrategy &self, bool b) { [](BuildStrategy &self, bool b) {
self.fuse_elewise_add_act_ops_ = b; self.fuse_elewise_add_act_ops_ = b;
}); })
.def("_create_passes_from_strategy",
[](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
return self.CreatePassesFromStrategy();
});
pe.def(py::init<const std::vector<platform::Place> &, pe.def(py::init<const std::vector<platform::Place> &,
const std::unordered_set<std::string> &, const std::unordered_set<std::string> &,
......
...@@ -70,8 +70,8 @@ function cmake_gen() { ...@@ -70,8 +70,8 @@ function cmake_gen() {
PYTHON_FLAGS="" PYTHON_FLAGS=""
SYSTEM=`uname -s` SYSTEM=`uname -s`
if [ "$SYSTEM" == "Darwin" ]; then if [ "$SYSTEM" == "Darwin" ]; then
echo "Using python abi: $1"
if [[ "$1" == "cp27-cp27m" ]] || [[ "$1" == "" ]]; then if [[ "$1" == "cp27-cp27m" ]] || [[ "$1" == "" ]]; then
echo "using python abi: $1"
if [ -d "/Library/Frameworks/Python.framework/Versions/2.7" ]; then if [ -d "/Library/Frameworks/Python.framework/Versions/2.7" ]; then
export LD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/2.7 export LD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/2.7
export DYLD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/2.7 export DYLD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/2.7
...@@ -82,7 +82,18 @@ function cmake_gen() { ...@@ -82,7 +82,18 @@ function cmake_gen() {
else else
exit 1 exit 1
fi fi
# TODO: qiyang add python3 part here elif [ "$1" == "cp35-cp35m" ]; then
if [ -d "/Library/Frameworks/Python.framework/Versions/3.5" ]; then
export LD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/3.5/lib/
export DYLD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/3.5/lib/
export PATH=/Library/Frameworks/Python.framework/Versions/3.5/bin/:${PATH}
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.5/bin/python3
-DPYTHON_INCLUDE_DIR:PATH=/Library/Frameworks/Python.framework/Versions/3.5/include/python3.5m/
-DPYTHON_LIBRARY:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.5/lib/libpython3.5m.dylib"
WITH_FLUID_ONLY=${WITH_FLUID_ONLY:-ON}
else
exit 1
fi
fi fi
else else
if [ "$1" != "" ]; then if [ "$1" != "" ]; then
...@@ -731,6 +742,10 @@ function main() { ...@@ -731,6 +742,10 @@ function main() {
build_mac build_mac
run_mac_test ${PROC_RUN:-1} run_mac_test ${PROC_RUN:-1}
;; ;;
macbuild)
cmake_gen ${PYTHON_ABI:-""}
build_mac
;;
cicheck_py35) cicheck_py35)
cmake_gen ${PYTHON_ABI:-""} cmake_gen ${PYTHON_ABI:-""}
build build
......
...@@ -284,7 +284,7 @@ def detection_output(loc, ...@@ -284,7 +284,7 @@ def detection_output(loc,
target_box=loc, target_box=loc,
code_type='decode_center_size') code_type='decode_center_size')
compile_shape = scores.shape compile_shape = scores.shape
run_shape = ops.shape(scores) run_shape = nn.shape(scores)
scores = nn.flatten(x=scores, axis=2) scores = nn.flatten(x=scores, axis=2)
scores = nn.softmax(input=scores) scores = nn.softmax(input=scores)
scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape) scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape)
...@@ -697,7 +697,7 @@ def ssd_loss(location, ...@@ -697,7 +697,7 @@ def ssd_loss(location,
raise ValueError("Only support mining_type == max_negative now.") raise ValueError("Only support mining_type == max_negative now.")
num, num_prior, num_class = confidence.shape num, num_prior, num_class = confidence.shape
conf_shape = ops.shape(confidence) conf_shape = nn.shape(confidence)
def __reshape_to_2d(var): def __reshape_to_2d(var):
return nn.flatten(x=var, axis=2) return nn.flatten(x=var, axis=2)
...@@ -724,7 +724,7 @@ def ssd_loss(location, ...@@ -724,7 +724,7 @@ def ssd_loss(location,
target_label.stop_gradient = True target_label.stop_gradient = True
conf_loss = nn.softmax_with_cross_entropy(confidence, target_label) conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
# 3. Mining hard examples # 3. Mining hard examples
actual_shape = ops.slice(conf_shape, axes=[0], starts=[0], ends=[2]) actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
actual_shape.stop_gradient = True actual_shape.stop_gradient = True
conf_loss = nn.reshape( conf_loss = nn.reshape(
x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape) x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
......
...@@ -507,7 +507,6 @@ def py_reader(capacity, ...@@ -507,7 +507,6 @@ def py_reader(capacity,
1. The basic usage of :code:`py_reader` is as follows: 1. The basic usage of :code:`py_reader` is as follows:
>>> import paddle.v2
>>> import paddle.fluid as fluid >>> import paddle.fluid as fluid
>>> import paddle.dataset.mnist as mnist >>> import paddle.dataset.mnist as mnist
>>> >>>
...@@ -515,7 +514,7 @@ def py_reader(capacity, ...@@ -515,7 +514,7 @@ def py_reader(capacity,
>>> shapes=[(-1,3,224,224), (-1,1)], >>> shapes=[(-1,3,224,224), (-1,1)],
>>> dtypes=['float32', 'int64']) >>> dtypes=['float32', 'int64'])
>>> reader.decorate_paddle_reader( >>> reader.decorate_paddle_reader(
>>> paddle.v2.reader.shuffle(paddle.batch(mnist.train()) >>> paddle.reader.shuffle(paddle.batch(mnist.train())
>>> >>>
>>> img, label = fluid.layers.read_file(reader) >>> img, label = fluid.layers.read_file(reader)
>>> loss = network(img, label) # some network definition >>> loss = network(img, label) # some network definition
...@@ -534,7 +533,6 @@ def py_reader(capacity, ...@@ -534,7 +533,6 @@ def py_reader(capacity,
2. When training and testing are both performed, two different 2. When training and testing are both performed, two different
:code:`py_reader` should be created with different names, e.g.: :code:`py_reader` should be created with different names, e.g.:
>>> import paddle.v2
>>> import paddle.fluid as fluid >>> import paddle.fluid as fluid
>>> import paddle.dataset.mnist as mnist >>> import paddle.dataset.mnist as mnist
>>> >>>
...@@ -548,7 +546,7 @@ def py_reader(capacity, ...@@ -548,7 +546,7 @@ def py_reader(capacity,
>>> dtypes=['float32', 'int64'], >>> dtypes=['float32', 'int64'],
>>> name='train_reader') >>> name='train_reader')
>>> train_reader.decorate_paddle_reader( >>> train_reader.decorate_paddle_reader(
>>> paddle.v2.reader.shuffle(paddle.batch(mnist.train()) >>> paddle.reader.shuffle(paddle.batch(mnist.train())
>>> >>>
>>> test_reader = fluid.layers.py_reader(capacity=32, >>> test_reader = fluid.layers.py_reader(capacity=32,
>>> shapes=[(-1,3,224,224), (-1,1)], >>> shapes=[(-1,3,224,224), (-1,1)],
......
...@@ -29,110 +29,29 @@ from .. import unique_name ...@@ -29,110 +29,29 @@ from .. import unique_name
from functools import reduce from functools import reduce
__all__ = [ __all__ = [
'fc', 'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
'embedding', 'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
'dynamic_lstm', 'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d',
'dynamic_lstmp', 'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d',
'dynamic_gru', 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose',
'gru_unit', 'sequence_expand', 'sequence_expand_as', 'sequence_pad', 'lstm_unit',
'linear_chain_crf', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod',
'crf_decoding', 'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
'cos_sim', 'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk',
'cross_entropy', 'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce',
'square_error_cost', 'hsigmoid', 'beam_search', 'row_conv', 'multiplex', 'layer_norm',
'chunk_eval', 'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
'sequence_conv', 'autoincreased_step_counter', 'reshape', 'squeeze', 'unsqueeze',
'conv2d', 'lod_reset', 'lrn', 'pad', 'pad_constant_like', 'label_smooth', 'roi_pool',
'conv3d', 'dice_loss', 'image_resize', 'image_resize_short', 'resize_bilinear',
'sequence_pool', 'gather', 'scatter', 'sequence_scatter', 'random_crop', 'mean_iou', 'relu',
'sequence_softmax', 'log', 'crop', 'rank_loss', 'elu', 'relu6', 'pow', 'stanh', 'hard_sigmoid',
'softmax', 'swish', 'prelu', 'brelu', 'leaky_relu', 'soft_relu', 'flatten',
'pool2d', 'sequence_mask', 'stack', 'pad2d', 'unstack', 'sequence_enumerate',
'pool3d', 'expand', 'sequence_concat', 'scale', 'elementwise_add', 'elementwise_div',
'batch_norm', 'elementwise_sub', 'elementwise_mul', 'elementwise_max', 'elementwise_min',
'beam_search_decode', 'elementwise_pow', 'uniform_random_batch_size_like', 'gaussian_random',
'conv2d_transpose', 'sampling_id', 'gaussian_random_batch_size_like', 'sum', 'slice', 'shape'
'conv3d_transpose',
'sequence_expand',
'sequence_expand_as',
'sequence_pad',
'lstm_unit',
'reduce_sum',
'reduce_mean',
'reduce_max',
'reduce_min',
'reduce_prod',
'sequence_first_step',
'sequence_last_step',
'dropout',
'split',
'ctc_greedy_decoder',
'edit_distance',
'l2_normalize',
'matmul',
'topk',
'warpctc',
'sequence_reshape',
'transpose',
'im2sequence',
'nce',
'hsigmoid',
'beam_search',
'row_conv',
'multiplex',
'layer_norm',
'softmax_with_cross_entropy',
'smooth_l1',
'one_hot',
'autoincreased_step_counter',
'reshape',
'squeeze',
'unsqueeze',
'lod_reset',
'lrn',
'pad',
'pad_constant_like',
'label_smooth',
'roi_pool',
'dice_loss',
'image_resize',
'image_resize_short',
'resize_bilinear',
'gather',
'scatter',
'sequence_scatter',
'random_crop',
'mean_iou',
'relu',
'log',
'crop',
'rank_loss',
'elu',
'relu6',
'pow',
'stanh',
'hard_sigmoid',
'swish',
'prelu',
'brelu',
'leaky_relu',
'soft_relu',
'flatten',
'sequence_mask',
'stack',
'pad2d',
'unstack',
'sequence_enumerate',
'expand',
'sequence_concat',
'scale',
'elementwise_add',
'elementwise_div',
'elementwise_sub',
'elementwise_mul',
'elementwise_max',
'elementwise_min',
'elementwise_pow',
] ]
...@@ -6463,6 +6382,246 @@ def expand(x, expand_times, name=None): ...@@ -6463,6 +6382,246 @@ def expand(x, expand_times, name=None):
return out return out
from paddle.fluid.framework import convert_np_dtype_to_dtype_
@templatedoc()
def uniform_random_batch_size_like(input,
shape,
dtype='float32',
input_dim_idx=0,
output_dim_idx=0,
min=-1.0,
max=1.0,
seed=0):
"""
${comment}
Args:
input (Variable): ${input_comment}
shape (tuple|list): ${shape_comment}
input_dim_idx (Int): ${input_dim_idx_comment}
output_dim_idx (Int): ${output_dim_idx_comment}
min (Float): ${min_comment}
max (Float): ${max_comment}
seed (Int): ${seed_comment}
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
out (Variable): ${out_comment}
"""
helper = LayerHelper('uniform_random_batch_size_like', **locals())
out = helper.create_tmp_variable(dtype)
c_dtype = convert_np_dtype_to_dtype_(dtype)
helper.append_op(
type='uniform_random_batch_size_like',
inputs={'Input': input},
outputs={'Out': out},
attrs={
'shape': shape,
'input_dim_idx': input_dim_idx,
'output_dim_idx': output_dim_idx,
'min': min,
'max': max,
'seed': seed,
'dtype': c_dtype
})
return out
@templatedoc()
def gaussian_random(shape,
mean=0.0,
std=1.0,
seed=0,
dtype='float32',
use_mkldnn=False):
"""
${comment}
Args:
shape (tuple|list): ${shape_comment}
mean (Float): ${mean_comment}
std (Float): ${std_comment}
seed (Int): ${seed_comment}
dtype(np.dtype|core.VarDesc.VarType|str): Output data type.
use_mkldnn (Bool): Only used in mkldnn kernel.
Returns:
out (Variable): ${out_comment}
"""
helper = LayerHelper('gaussian_random', **locals())
out = helper.create_tmp_variable(dtype)
c_dtype = convert_np_dtype_to_dtype_(dtype)
helper.append_op(
type='gaussian_random',
outputs={'Out': out},
attrs={
'shape': shape,
'mean': mean,
'std': std,
'seed': seed,
'dtype': c_dtype,
'use_mkldnn': use_mkldnn
})
return out
@templatedoc()
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
"""
${comment}
Args:
x (Variable): ${x_comment}
min (Float): ${min_comment}
max (Float): ${max_comment}
seed (Float): ${seed_comment}
dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
Returns:
out (Variable): ${out_comment}
"""
helper = LayerHelper('sampling_id', **locals())
out = helper.create_tmp_variable(dtype)
helper.append_op(
type='sampling_id',
inputs={'X': x},
outputs={'Out': out},
attrs={'min': min,
'max': max,
'seed': seed})
return out
@templatedoc()
def gaussian_random_batch_size_like(input,
shape,
input_dim_idx=0,
output_dim_idx=0,
mean=0.0,
std=1.0,
seed=0,
dtype='float32'):
"""
${comment}
Args:
input (Variable): ${input_comment}
shape (tuple|list): ${shape_comment}
input_dim_idx (Int): ${input_dim_idx_comment}
output_dim_idx (Int): ${output_dim_idx_comment}
mean (Float): ${mean_comment}
std (Float): ${std_comment}
seed (Int): ${seed_comment}
dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
Returns:
out (Variable): ${out_comment}
"""
helper = LayerHelper('gaussian_random_batch_size_like', **locals())
out = helper.create_tmp_variable(dtype)
c_dtype = convert_np_dtype_to_dtype_(dtype)
helper.append_op(
type='gaussian_random_batch_size_like',
inputs={'Input': input},
outputs={'Out': out},
attrs={
'shape': shape,
'input_dim_idx': input_dim_idx,
'output_dim_idx': output_dim_idx,
'mean': mean,
'std': std,
'seed': seed,
'dtype': c_dtype
})
return out
@templatedoc()
def sum(x, use_mkldnn=False):
"""
${comment}
Args:
x (Variable): ${x_comment}
use_mkldnn (Bool): ${use_mkldnn_comment}
Returns:
out (Variable): ${out_comment}
"""
helper = LayerHelper('sum', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
helper.append_op(
type='sum',
inputs={'X': x},
outputs={'Out': out},
attrs={'use_mkldnn': use_mkldnn})
return out
@templatedoc()
def slice(input, axes, starts, ends):
"""
${comment}
Args:
input (Variable): ${input_comment}.
axes (List): ${axes_comment}
starts (List): ${starts_comment}
ends (List): ${ends_comment}
Returns:
out (Variable): ${out_comment}
"""
helper = LayerHelper('slice', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
helper.append_op(
type='slice',
inputs={'Input': input},
outputs={'Out': out},
attrs={'axes': axes,
'starts': starts,
'ends': ends})
return out
@templatedoc()
def shape(input):
"""
${comment}
Args:
input (Variable): ${input_comment}
Returns:
out (Variable): ${out_comment}
"""
helper = LayerHelper('shape', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
helper.append_op(
type='shape', inputs={'Input': input}, outputs={'Out': out})
return out
def _elementwise_op(helper): def _elementwise_op(helper):
op_type = helper.layer_type op_type = helper.layer_type
x = helper.kwargs.get('x', None) x = helper.kwargs.get('x', None)
......
...@@ -45,13 +45,6 @@ __all__ = [ ...@@ -45,13 +45,6 @@ __all__ = [
'logical_or', 'logical_or',
'logical_xor', 'logical_xor',
'logical_not', 'logical_not',
'uniform_random_batch_size_like',
'gaussian_random',
'sampling_id',
'gaussian_random_batch_size_like',
'sum',
'slice',
'shape',
'maxout', 'maxout',
] ]
......
...@@ -345,7 +345,7 @@ class OpTest(unittest.TestCase): ...@@ -345,7 +345,7 @@ class OpTest(unittest.TestCase):
actual_t, expect_t, atol=atol, equal_nan=equal_nan), actual_t, expect_t, atol=atol, equal_nan=equal_nan),
"Output (" + out_name + ") has diff at " + str(place) + "Output (" + out_name + ") has diff at " + str(place) +
"\nExpect " + str(expect_t) + "\n" + "But Got" + "\nExpect " + str(expect_t) + "\n" + "But Got" +
str(actual_t)) str(actual_t) + " in class " + self.__class__.__name__)
if isinstance(expect, tuple): if isinstance(expect, tuple):
self.assertListEqual(actual.recursive_sequence_lengths(), self.assertListEqual(actual.recursive_sequence_lengths(),
expect[1], "Output (" + out_name + expect[1], "Output (" + out_name +
......
...@@ -20,6 +20,7 @@ import six ...@@ -20,6 +20,7 @@ import six
import sys import sys
import collections import collections
import math import math
import paddle.fluid as fluid
from op_test import OpTest from op_test import OpTest
...@@ -32,7 +33,7 @@ class TestDetectionMAPOp(OpTest): ...@@ -32,7 +33,7 @@ class TestDetectionMAPOp(OpTest):
self.detect = np.array(self.detect).astype('float32') self.detect = np.array(self.detect).astype('float32')
self.mAP = np.array(self.mAP).astype('float32') self.mAP = np.array(self.mAP).astype('float32')
if (len(self.class_pos_count) > 0): if len(self.class_pos_count) > 0:
self.class_pos_count = np.array(self.class_pos_count).astype( self.class_pos_count = np.array(self.class_pos_count).astype(
'int32') 'int32')
self.true_pos = np.array(self.true_pos).astype('float32') self.true_pos = np.array(self.true_pos).astype('float32')
...@@ -273,7 +274,7 @@ class TestDetectionMAPOp11Point(TestDetectionMAPOp): ...@@ -273,7 +274,7 @@ class TestDetectionMAPOp11Point(TestDetectionMAPOp):
class TestDetectionMAPOpMultiBatch(TestDetectionMAPOp): class TestDetectionMAPOpMultiBatch(TestDetectionMAPOp):
def init_test_case(self): def init_test_case(self):
super(TestDetectionMAPOpMultiBatch, self).init_test_case() super(TestDetectionMAPOpMultiBatch, self).init_test_case()
self.class_pos_count = [0, 2, 1] self.class_pos_count = [0, 2, 1, 0]
self.true_pos_lod = [[0, 3, 2]] self.true_pos_lod = [[0, 3, 2]]
self.true_pos = [[0.7, 1.], [0.3, 0.], [0.2, 1.], [0.8, 0.], [0.1, 1.]] self.true_pos = [[0.7, 1.], [0.3, 0.], [0.2, 1.], [0.8, 0.], [0.1, 1.]]
self.false_pos_lod = [[0, 3, 2]] self.false_pos_lod = [[0, 3, 2]]
......
...@@ -541,7 +541,7 @@ class TestBook(unittest.TestCase): ...@@ -541,7 +541,7 @@ class TestBook(unittest.TestCase):
with program_guard(program): with program_guard(program):
input = layers.data( input = layers.data(
name="input", shape=[3, 100, 100], dtype="float32") name="input", shape=[3, 100, 100], dtype="float32")
out = layers.shape(input, name="shape") out = layers.shape(input)
self.assertIsNotNone(out) self.assertIsNotNone(out)
print(str(program)) print(str(program))
...@@ -758,6 +758,65 @@ class TestBook(unittest.TestCase): ...@@ -758,6 +758,65 @@ class TestBook(unittest.TestCase):
out = layers.expand(x, [1, 2]) out = layers.expand(x, [1, 2])
print(str(program)) print(str(program))
def test_uniform_random_batch_size_like(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[13, 11], dtype='float32')
out = layers.uniform_random_batch_size_like(input, [-1, 11])
self.assertIsNotNone(out)
print(str(program))
def test_gaussian_random(self):
program = Program()
with program_guard(program):
out = layers.gaussian_random(shape=[20, 30])
self.assertIsNotNone(out)
print(str(program))
def test_sampling_id(self):
program = Program()
with program_guard(program):
x = layers.data(
name="X",
shape=[13, 11],
dtype='float32',
append_batch_size=False)
out = layers.sampling_id(x)
self.assertIsNotNone(out)
print(str(program))
def test_gaussian_random_batch_size_like(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[13, 11], dtype='float32')
out = layers.gaussian_random_batch_size_like(
input, shape=[-1, 11], mean=1.0, std=2.0)
self.assertIsNotNone(out)
print(str(program))
def test_sum(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[13, 11], dtype='float32')
out = layers.sum(input)
self.assertIsNotNone(out)
print(str(program))
def test_slice(self):
starts = [1, 0, 2]
ends = [3, 3, 4]
axes = [0, 1, 2]
program = Program()
with program_guard(program):
input = layers.data(
name="input", shape=[3, 4, 5, 6], dtype='float32')
out = layers.slice(input, axes=axes, starts=starts, ends=ends)
def test_softshrink(self): def test_softshrink(self):
program = Program() program = Program()
with program_guard(program): with program_guard(program):
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
import unittest
import os
import sys
import math
def simple_fc_net():
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = img
for _ in range(4):
hidden = fluid.layers.fc(
hidden,
size=200,
act='tanh',
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=1.0)))
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.mean(loss)
return loss
class TestPassBuilder(unittest.TestCase):
def check_network_convergence(self, use_cuda, build_strategy=None):
os.environ['CPU_NUM'] = str(4)
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
loss = simple_fc_net()
test_program = main.clone(for_test=True)
opt = fluid.optimizer.SGD(learning_rate=0.001)
opt.minimize(loss)
batch_size = 32
image = np.random.normal(size=(batch_size, 784)).astype('float32')
label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup)
feed_dict = {'image': image, 'label': label}
train_exe = fluid.ParallelExecutor(
use_cuda=use_cuda,
loss_name=loss.name,
main_program=main,
build_strategy=build_strategy)
test_exe = fluid.ParallelExecutor(
use_cuda=use_cuda,
main_program=test_program,
share_vars_from=train_exe,
build_strategy=build_strategy)
for i in range(5):
test_loss, = test_exe.run([loss.name], feed=feed_dict)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
avg_test_loss_val = np.array(test_loss).mean()
if math.isnan(float(avg_test_loss_val)):
sys.exit("got NaN loss, testing failed.")
avg_train_loss_val = np.array(train_loss).mean()
if math.isnan(float(avg_train_loss_val)):
sys.exit("got NaN loss, training failed.")
self.assertTrue(
np.allclose(
train_loss, test_loss, atol=1e-8),
"Train loss: " + str(train_loss) + "\n Test loss:" +
str(test_loss))
def test_parallel_testing_with_new_strategy(self):
build_strategy = fluid.BuildStrategy()
pass_builder = build_strategy._create_passes_from_strategy()
origin_len = len(pass_builder.all_passes())
viz_pass = pass_builder.append_pass("graph_viz_pass")
self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))
pass_builder.insert_pass(
len(pass_builder.all_passes()), "graph_viz_pass")
self.assertEqual(origin_len + 2, len(pass_builder.all_passes()))
pass_builder.remove_pass(len(pass_builder.all_passes()) - 1)
self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))
viz_pass.set_str("graph_viz_path", "/tmp/test_viz_pass")
self.check_network_convergence(
use_cuda=core.is_compiled_with_cuda(),
build_strategy=build_strategy)
try:
os.stat("/tmp/test_viz_pass")
except os.error:
self.assertFalse(True)
if __name__ == '__main__':
unittest.main()
...@@ -246,6 +246,7 @@ def prepare_encoder(src_word, ...@@ -246,6 +246,7 @@ def prepare_encoder(src_word,
padding_idx=pos_pad_idx, padding_idx=pos_pad_idx,
param_attr=fluid.ParamAttr( param_attr=fluid.ParamAttr(
name=pos_enc_param_name, trainable=False)) name=pos_enc_param_name, trainable=False))
src_pos_enc.stop_gradient = True
enc_input = src_word_emb + src_pos_enc enc_input = src_word_emb + src_pos_enc
# FIXME(guosheng): Decouple the program desc with batch_size. # FIXME(guosheng): Decouple the program desc with batch_size.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册