提交 e7684911 编写于 作者: C chengduoZH

add gather op handle

上级 124c9308
......@@ -5,22 +5,22 @@ cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod
if(WITH_GPU)
nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda)
nv_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
endif()
cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry)
cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base)
cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph)
if(WITH_GPU)
set(multi_devices_graph_builder_deps nccl_all_reduce_op_handle)
else()
set(multi_devices_graph_builder_deps)
endif()
cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry)
cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base)
cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph)
cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle ${multi_devices_graph_builder_deps})
cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto)
cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context)
cc_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
cc_test(broadcast_op_test SRCS broadcast_op_handle_test.cc DEPS var_handle op_handle_base scope lod_tensor ddim memory
device_context broadcast_op_handle)
cc_test(gather_op_test SRCS gather_op_handle_test.cc DEPS var_handle op_handle_base scope lod_tensor ddim memory
device_context gather_op_handle)
......@@ -18,7 +18,7 @@ namespace paddle {
namespace framework {
namespace details {
Tensor *GetTensorFromVar(Variable *in_var) {
static Tensor *GetTensorFromVar(Variable *in_var) {
if (in_var->IsType<LoDTensor>()) {
return in_var->GetMutable<LoDTensor>();
} else if (in_var->IsType<SelectedRows>()) {
......@@ -52,29 +52,34 @@ void BroadcastOpHandle::RunImpl() {
auto &out_p = out_handle->place_;
auto out_scope_idx = out_handle->scope_idx_;
PADDLE_ENFORCE_LT(out_scope_idx, local_scopes_.size(), "");
PADDLE_ENFORCE_LT(out_scope_idx, local_scopes_.size(),
"%s is not the the local_scopes ", out_handle->name_);
auto *s = local_scopes_[out_scope_idx];
auto out_var = s->FindVar(out_handle->name_);
PADDLE_ENFORCE_EQ(out_var->Type(), in_var->Type(), "");
PADDLE_ENFORCE_EQ(
out_var->Type(), in_var->Type(),
"The type of input and output is not equal. (%s_%d vs %s_%d)",
out_handle->name_, out_handle->scope_idx_, in_var_handle->name_,
in_var_handle->scope_idx_);
if (in_var->IsType<framework::SelectedRows>()) {
auto in_sr = in_var->GetMutable<framework::SelectedRows>();
auto out = out_var->GetMutable<framework::SelectedRows>();
if (in_sr == out) continue;
out->set_height(in_sr->height());
out->set_rows(in_sr->rows());
out->mutable_value()->Resize(in_sr->value().dims());
out->mutable_value()->mutable_data(out_p, in_sr->value().type());
auto &in_sr = in_var->Get<framework::SelectedRows>();
auto out_sr = out_var->GetMutable<framework::SelectedRows>();
if (&in_sr == out_sr) continue;
out_sr->set_height(in_sr.height());
out_sr->set_rows(in_sr.rows());
out_sr->mutable_value()->Resize(in_sr.value().dims());
out_sr->mutable_value()->mutable_data(out_p, in_sr.value().type());
} else if (in_var->IsType<framework::LoDTensor>()) {
auto in_lod = in_var->GetMutable<framework::LoDTensor>();
auto out = out_var->GetMutable<framework::LoDTensor>();
if (in_lod == out) continue;
out->set_lod(in_lod->lod());
out->Resize(in_lod->dims());
out->mutable_data(out_p, in_lod->type());
auto in_lod = in_var->Get<framework::LoDTensor>();
auto out_lod = out_var->GetMutable<framework::LoDTensor>();
if (&in_lod == out_lod) continue;
out_lod->set_lod(in_lod.lod());
out_lod->Resize(in_lod.dims());
out_lod->mutable_data(out_p, in_lod.type());
} else {
PADDLE_THROW("Var should be LoDTensor or SelectedRows");
PADDLE_THROW("Var should be LoDTensor or SelectedRows.");
}
Tensor *out_tensor = GetTensorFromVar(out_var);
......
......@@ -35,7 +35,6 @@ namespace details {
struct BroadcastOpHandle : public OpHandleBase {
const std::vector<Scope *> &local_scopes_;
const std::vector<platform::Place> &places_;
// const platform::ContextMap &ctxs_;
BroadcastOpHandle(const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places);
......
......@@ -84,7 +84,7 @@ class BroadcastTester : public ::testing::Test {
bc_op_handle_->AddOutput(out_var_handle);
}
}
void BroadcastDestroy() {
void BroadcastOpDestroy() {
for (auto in : bc_op_handle_->inputs_) {
delete in;
}
......@@ -139,7 +139,7 @@ class BroadcastTester : public ::testing::Test {
}
}
BroadcastDestroy();
BroadcastOpDestroy();
}
void TestBroadcastSelectedRows() {
......@@ -188,7 +188,7 @@ class BroadcastTester : public ::testing::Test {
}
}
BroadcastDestroy();
BroadcastOpDestroy();
}
public:
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/gather_op_handle.h"
namespace paddle {
namespace framework {
namespace details {
static Tensor *GetTensorFromVar(Variable *in_var) {
if (in_var->IsType<LoDTensor>()) {
return in_var->GetMutable<LoDTensor>();
} else if (in_var->IsType<SelectedRows>()) {
return in_var->GetMutable<SelectedRows>()->mutable_value();
} else {
PADDLE_THROW("Var should be LoDTensor or SelectedRows");
}
return nullptr;
}
GatherOpHandle::GatherOpHandle(const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places)
: local_scopes_(local_scopes), places_(places) {}
void GatherOpHandle::RunImpl() {
PADDLE_ENFORCE_EQ(this->inputs_.size(), places_.size());
PADDLE_ENFORCE_EQ(this->outputs_.size(), 1);
// Wait input done, this Wait is asynchronous operation
for (auto *in : inputs_) {
if (inputs_[0]->generated_op_) {
auto &p = static_cast<VarHandle *>(in)->place_;
in->generated_op_->Wait(dev_ctxes_[p]);
}
}
auto in_0_handle = static_cast<VarHandle *>(inputs_[0]);
auto pre_in_var =
local_scopes_[in_0_handle->scope_idx_]->FindVar(in_0_handle->name_);
std::vector<int64_t> out_rows;
std::vector<Tensor *> in_tensors;
std::vector<platform::Place> in_places;
// gather the inputs
for (auto *in : inputs_) {
auto in_handle = static_cast<VarHandle *>(in);
auto in_p = in_handle->place_;
in_places.push_back(in_p);
PADDLE_ENFORCE_LT(in_handle->scope_idx_, local_scopes_.size(),
"%s is not the the local_scopes ", in_handle->name_);
auto *s = local_scopes_[in_handle->scope_idx_];
auto in_var = s->FindVar(in_handle->name_);
PADDLE_ENFORCE_EQ(in_var->Type(), pre_in_var->Type(),
"The type of input is not consistent.");
if (in_var->IsType<framework::SelectedRows>()) {
auto &pre_in = pre_in_var->Get<framework::SelectedRows>();
auto &in_sr = in_var->Get<framework::SelectedRows>();
auto in_sr_rows = in_sr.rows();
out_rows.insert(out_rows.begin(), in_sr_rows.begin(), in_sr_rows.end());
PADDLE_ENFORCE_EQ(pre_in.height(), in_sr.height(), "");
PADDLE_ENFORCE_EQ(pre_in.GetCompleteDims(), in_sr.GetCompleteDims(), "");
} else if (in_var->IsType<framework::LoDTensor>()) {
auto &pre_in = pre_in_var->Get<framework::LoDTensor>();
auto &in_lodtensor = in_var->Get<framework::LoDTensor>();
PADDLE_ENFORCE_EQ(in_lodtensor.lod(), pre_in.lod());
PADDLE_ENFORCE_EQ(in_lodtensor.dims(), pre_in.dims());
} else {
PADDLE_THROW("Var should be LoDTensor or SelectedRows.");
}
in_tensors.push_back(GetTensorFromVar(in_var));
pre_in_var = in_var;
}
// write the output
auto out_handle = static_cast<VarHandle *>(this->outputs_[0]);
auto &out_place = out_handle->place_;
auto out_scope_idx = out_handle->scope_idx_;
auto out_var = local_scopes_[out_scope_idx]->FindVar(out_handle->name_);
if (pre_in_var->IsType<framework::SelectedRows>()) {
auto &pre_in = pre_in_var->Get<framework::SelectedRows>();
auto out = out_var->GetMutable<framework::SelectedRows>();
out->set_height(pre_in.height());
out->set_rows(out_rows);
size_t rows = out_rows.size();
DDim out_dim = pre_in.GetCompleteDims();
out_dim[0] = static_cast<int64_t>(rows);
out->mutable_value()->Resize(out_dim);
out->mutable_value()->mutable_data(out_place, pre_in.value().type());
auto out_tensor = out->mutable_value();
// copy
int s = 0, e = 0;
for (size_t j = 0; j < in_tensors.size(); ++j) {
e += in_tensors[j]->dims()[0];
auto sub_out = out_tensor->Slice(s, e);
paddle::framework::TensorCopy(*(in_tensors[j]), out_place,
*(dev_ctxes_[in_places[j]]), &sub_out);
s = e;
}
} else if (pre_in_var->IsType<framework::LoDTensor>()) {
} else {
PADDLE_THROW("Var should be LoDTensor or SelectedRows.");
}
}
std::string GatherOpHandle::Name() const { return "broadcast"; }
} // namespace details
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
namespace framework {
namespace details {
/*
* Broadcast the input to all scope.
*
*/
struct GatherOpHandle : public OpHandleBase {
const std::vector<Scope *> &local_scopes_;
const std::vector<platform::Place> &places_;
GatherOpHandle(const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places);
std::string Name() const override;
bool IsMultiDeviceTransfer() override { return false; };
protected:
void RunImpl() override;
};
} // namespace details
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/gather_op_handle.h"
#include "gtest/gtest.h"
#include "paddle/fluid/platform/device_context.h"
namespace f = paddle::framework;
namespace p = paddle::platform;
// test data amount
const f::DDim kDims = {20, 20};
class GatherTester : public ::testing::Test {
public:
void InitCtx(bool use_gpu) {
if (use_gpu) {
#ifdef PADDLE_WITH_CUDA
int count = p::GetCUDADeviceCount();
if (count <= 1) {
LOG(WARNING) << "Cannot test multi-gpu Gather, because the CUDA "
"device count is "
<< count;
exit(0);
}
for (int i = 0; i < count; ++i) {
auto p = p::CUDAPlace(i);
gpu_list_.push_back(p);
ctxs_.emplace_back(new p::CUDADeviceContext(p));
}
#else
PADDLE_THROW("CUDA is not support.");
#endif
} else {
int count = 8;
for (int i = 0; i < count; ++i) {
auto p = p::CPUPlace();
gpu_list_.push_back(p);
ctxs_.emplace_back(new p::CPUDeviceContext(p));
}
}
}
template <class T>
void InitGatherOp(int input_scope_idx) {
for (size_t j = 0; j < gpu_list_.size(); ++j) {
local_scope_.push_back(&g_scope_.NewScope());
auto* out_var = local_scope_[j]->Var("input");
out_var->GetMutable<T>();
}
auto* in_var = local_scope_[input_scope_idx]->Var("out");
in_var->GetMutable<T>();
gather_op_handle_ = new f::details::GatherOpHandle(local_scope_, gpu_list_);
f::details::VarHandle* out_var_handle = new f::details::VarHandle();
out_var_handle->place_ = gpu_list_[input_scope_idx];
out_var_handle->name_ = "out";
out_var_handle->version_ = 2;
out_var_handle->scope_idx_ = input_scope_idx;
out_var_handle->generated_op_ = gather_op_handle_;
gather_op_handle_->AddOutput(out_var_handle);
for (size_t j = 0; j < gpu_list_.size(); ++j) {
gather_op_handle_->dev_ctxes_[gpu_list_[j]] = ctxs_[j];
f::details::VarHandle* in_var_handle = new f::details::VarHandle();
in_var_handle->place_ = gpu_list_[j];
in_var_handle->name_ = "input";
in_var_handle->version_ = 1;
in_var_handle->scope_idx_ = j;
in_var_handle->generated_op_ = nullptr;
gather_op_handle_->AddInput(in_var_handle);
}
}
void GatherOpDestroy() {
for (auto in : gather_op_handle_->inputs_) {
delete in;
}
for (auto out : gather_op_handle_->outputs_) {
delete out;
}
delete gather_op_handle_;
for (size_t j = 0; j < ctxs_.size(); ++j) {
delete ctxs_[j];
}
}
void WaitAll() {
for (size_t j = 0; j < ctxs_.size(); ++j) {
ctxs_[j]->Wait();
}
}
void TestGatherLodTensor() {
// int input_scope_idx = 0;
// InitGatherOp<f::LoDTensor>(input_scope_idx);
//
// auto in_var = local_scope_[input_scope_idx]->Var("input");
// auto in_lod_tensor = in_var->GetMutable<f::LoDTensor>();
// in_lod_tensor->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);
//
// std::vector<float> send_vector(f::product(kDims), input_scope_idx +
// 12);
// for (size_t k = 0; k < send_vector.size(); ++k) {
// send_vector[k] = k;
// }
// f::LoD lod{{0, 10, 20}};
// paddle::framework::TensorFromVector<float>(
// send_vector, *(ctxs_[input_scope_idx]), in_lod_tensor);
// in_lod_tensor->set_lod(lod);
//
// gather_op_handle_->Run(false);
//
// WaitAll();
//
// p::CPUPlace cpu_place;
// for (size_t j = 0; j < gpu_list_.size(); ++j) {
// auto out_var = local_scope_[j]->Var("out");
// auto out_tensor = out_var->Get<f::LoDTensor>();
// PADDLE_ENFORCE_EQ(out_tensor.lod(), lod, "lod is not equal.");
//
// f::Tensor result_tensor;
// f::TensorCopy(out_tensor, cpu_place, *(ctxs_[j]), &result_tensor);
// float* ct = result_tensor.mutable_data<float>(cpu_place);
//
// for (int64_t j = 0; j < f::product(kDims); ++j) {
// ASSERT_NEAR(ct[j], send_vector[j], 1e-5);
// }
// }
//
// GatherOpDestroy();
}
void TestGatherSelectedRows() {
int output_scope_idx = 0;
InitGatherOp<f::SelectedRows>(output_scope_idx);
int height = kDims[0] * 2;
std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
2, 4, 6, 3, 1, 1, 1, 1, 3, 7};
std::vector<float> send_vector(f::product(kDims));
for (size_t k = 0; k < send_vector.size(); ++k) {
send_vector[k] = k;
}
for (size_t input_scope_idx = 0; input_scope_idx < gpu_list_.size();
++input_scope_idx) {
auto in_var = local_scope_[input_scope_idx]->Var("input");
auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
auto value = in_selected_rows->mutable_value();
value->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);
in_selected_rows->set_height(height);
in_selected_rows->set_rows(rows);
paddle::framework::TensorFromVector<float>(
send_vector, *(ctxs_[input_scope_idx]), value);
value->Resize(kDims);
}
gather_op_handle_->Run(false);
WaitAll();
p::CPUPlace cpu_place;
auto out_var = local_scope_[output_scope_idx]->Var("out");
auto& out_select_rows = out_var->Get<f::SelectedRows>();
auto rt = out_select_rows.value();
PADDLE_ENFORCE_EQ(out_select_rows.height(), height, "height is not equal.");
for (size_t k = 0; k < out_select_rows.rows().size(); ++k) {
PADDLE_ENFORCE_EQ(out_select_rows.rows()[k], rows[k % rows.size()]);
}
f::Tensor result_tensor;
f::TensorCopy(rt, cpu_place, *(ctxs_[output_scope_idx]), &result_tensor);
float* ct = result_tensor.data<float>();
for (int64_t j = 0; j < f::product(kDims); ++j) {
ASSERT_NEAR(ct[j], send_vector[j % send_vector.size()], 1e-5);
}
GatherOpDestroy();
}
public:
f::Scope g_scope_;
std::vector<p::DeviceContext*> ctxs_;
std::vector<f::Scope*> local_scope_;
std::vector<p::Place> gpu_list_;
f::details::GatherOpHandle* gather_op_handle_;
};
// TEST_F(GatherTester, TestCPUGatherTestLodTensor) {
// InitCtx(false);
// TestGatherLodTensor();
//}
TEST_F(GatherTester, TestCPUGatherTestSelectedRows) {
InitCtx(false);
TestGatherSelectedRows();
}
#ifdef PADDLE_WITH_CUDA
// TEST_F(GatherTester, TestGPUGatherTestLodTensor) {
// InitCtx(true);
// TestGatherLodTensor();
//}
TEST_F(GatherTester, TestGPUGatherTestSelectedRows) {
InitCtx(true);
TestGatherSelectedRows();
}
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册