Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e71b836f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e71b836f
编写于
10月 10, 2017
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into dev_opdesc_in_python
上级
247fb2a0
ee22a436
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
920 addition
and
43 deletion
+920
-43
cmake/configure.cmake
cmake/configure.cmake
+4
-0
doc/design/python_api.md
doc/design/python_api.md
+6
-6
paddle/framework/CMakeLists.txt
paddle/framework/CMakeLists.txt
+1
-1
paddle/framework/op_desc.cc
paddle/framework/op_desc.cc
+36
-0
paddle/framework/op_desc.h
paddle/framework/op_desc.h
+2
-0
paddle/framework/operator.h
paddle/framework/operator.h
+3
-3
paddle/framework/tensor_array.h
paddle/framework/tensor_array.h
+2
-2
paddle/framework/var_desc.cc
paddle/framework/var_desc.cc
+8
-0
paddle/framework/var_desc.h
paddle/framework/var_desc.h
+4
-0
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+1
-0
paddle/operators/dynamic_recurrent_op.cc
paddle/operators/dynamic_recurrent_op.cc
+276
-0
paddle/operators/dynamic_recurrent_op.h
paddle/operators/dynamic_recurrent_op.h
+158
-0
paddle/operators/dynamic_recurrent_op_test.cc
paddle/operators/dynamic_recurrent_op_test.cc
+222
-0
paddle/pybind/protobuf.cc
paddle/pybind/protobuf.cc
+5
-2
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+0
-15
python/paddle/v2/framework/graph.py
python/paddle/v2/framework/graph.py
+122
-11
python/paddle/v2/framework/tests/test_infer_shape.py
python/paddle/v2/framework/tests/test_infer_shape.py
+3
-3
python/paddle/v2/framework/tests/test_parameter.py
python/paddle/v2/framework/tests/test_parameter.py
+27
-0
python/paddle/v2/framework/tests/test_variable.py
python/paddle/v2/framework/tests/test_variable.py
+40
-0
未找到文件。
cmake/configure.cmake
浏览文件 @
e71b836f
...
...
@@ -24,6 +24,10 @@ if(WITH_DOUBLE)
add_definitions
(
-DPADDLE_TYPE_DOUBLE
)
endif
(
WITH_DOUBLE
)
if
(
WITH_TESTING
)
add_definitions
(
-DPADDLE_WITH_TESTING
)
endif
(
WITH_TESTING
)
if
(
NOT WITH_TIMER
)
add_definitions
(
-DPADDLE_DISABLE_TIMER
)
endif
(
NOT WITH_TIMER
)
...
...
doc/design/python_api.md
浏览文件 @
e71b836f
...
...
@@ -22,7 +22,7 @@ Whenever we create a block, we need to set its parent block to the current block
```
python
class
Program
(
objects
):
def
__init__
(
self
):
self
.
proto
=
core
.
NewProgram
()
# a C++ ProgramDesc pointer.
self
.
desc
=
core
.
NewProgram
()
# a C++ ProgramDesc pointer.
self
.
blocks
=
vector
<
Block
>
()
self
.
blocks
.
append
(
Block
(
self
,
-
1
))
# the global block
self
.
current_block
=
0
# initialized to the global block
...
...
@@ -57,7 +57,7 @@ A [Block](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.m
```
python
class
Block
(
objects
):
def
__init__
(
self
,
program
,
parent_idx
):
self
.
proto
=
core
.
NewBlock
(
program
.
proto
)
self
.
desc
=
core
.
NewBlock
(
program
.
desc
)
self
.
program
=
program
self
.
vars
=
map
<
string
,
Variable
>
()
self
.
ops
=
vector
<
Operator
>
()
...
...
@@ -98,11 +98,11 @@ class Operator(object):
outputs
,
# dict<stirng, Variable>
attrs
# dict<string, Any>
):
self
.
proto
=
core
.
NewOpDesc
(
block
.
proto
,
type
,
inputs
,
outputs
,
attrs
)
core
.
infer_shape
(
self
.
proto
,
inputs
,
outputs
)
self
.
desc
=
core
.
NewOpDesc
(
block
.
desc
,
type
,
inputs
,
outputs
,
attrs
)
core
.
infer_shape
(
self
.
desc
,
inputs
,
outputs
)
def
type
(
self
):
return
self
.
proto
.
type
()
return
self
.
desc
.
type
()
```
`Operator`
creates the
`OpDesc`
message in C++ space, so that it can call the
`InferShape`
function, which is in C++.
...
...
@@ -124,7 +124,7 @@ class Variable(object):
name
=
unique_name_generator
()
self
.
name
=
name
self
.
block
=
block
self
.
proto
=
core
.
NewVarDesc
(
block
.
proto
,
name
,
shape
,
lod_level
)
self
.
desc
=
core
.
NewVarDesc
(
block
.
desc
,
name
,
shape
,
lod_level
)
self
.
writer
=
None
```
...
...
paddle/framework/CMakeLists.txt
浏览文件 @
e71b836f
...
...
@@ -19,7 +19,7 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library
(
framework_proto SRCS framework.proto
)
cc_library
(
attribute SRCS attribute.cc DEPS framework_proto
)
cc_library
(
proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute
)
cc_library
(
proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute
ddim
)
cc_library
(
op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute
)
cc_test
(
op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker
)
cc_library
(
op_info SRCS op_info.cc DEPS attribute framework_proto proto_desc
)
...
...
paddle/framework/op_desc.cc
浏览文件 @
e71b836f
...
...
@@ -13,7 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_desc.h"
#include <functional>
#include <unordered_map>
#include "paddle/framework/block_desc.h"
#include "paddle/framework/operator.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -190,5 +193,38 @@ void OpDescBind::Sync() {
need_update_
=
false
;
}
}
using
InferShapeFuncMap
=
std
::
unordered_map
<
std
::
string
/*op_type*/
,
std
::
function
<
void
(
InferShapeContext
*
)
>>
;
static
InferShapeFuncMap
&
InferShapeFuncs
()
{
static
InferShapeFuncMap
*
g_map
=
nullptr
;
if
(
g_map
==
nullptr
)
{
g_map
=
new
InferShapeFuncMap
();
auto
&
info_map
=
OpInfoMap
::
Instance
();
// all registered kernels
for
(
auto
&
pair
:
OperatorWithKernel
::
AllOpKernels
())
{
auto
&
info
=
info_map
.
Get
(
pair
.
first
);
// use empty type here to avoid runtime checks.
auto
op
=
static_cast
<
OperatorWithKernel
*>
(
info
.
Creator
()(
""
,
{},
{},
{}));
g_map
->
insert
(
{
pair
.
first
,
[
op
](
InferShapeContext
*
ctx
)
{
op
->
InferShape
(
ctx
);
}});
}
}
return
*
g_map
;
}
void
OpDescBind
::
InferShape
(
const
BlockDescBind
&
block
)
const
{
auto
&
funcs
=
InferShapeFuncs
();
auto
it
=
funcs
.
find
(
this
->
Type
());
if
(
it
==
funcs
.
end
())
{
PADDLE_THROW
(
"Operator %s has not been registered"
,
this
->
Type
());
}
CompileTimeInferShapeContext
ctx
(
*
this
,
block
);
it
->
second
(
&
ctx
);
}
}
// namespace framework
}
// namespace paddle
paddle/framework/op_desc.h
浏览文件 @
e71b836f
...
...
@@ -100,6 +100,8 @@ class OpDescBind {
return
&
this
->
attrs_
;
}
void
InferShape
(
const
BlockDescBind
&
block
)
const
;
private:
template
<
typename
MapType
>
static
std
::
vector
<
typename
MapType
::
key_type
>
MapKeys
(
const
MapType
&
map
)
{
...
...
paddle/framework/operator.h
浏览文件 @
e71b836f
...
...
@@ -142,9 +142,9 @@ class OperatorBase {
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
// register it. i.e. `Clone` method is not needed to define by yourself.
#define DEFINE_OP_CLONE_METHOD(cls) \
std::unique_ptr<OperatorBase> Clone() const final { \
return std::unique_ptr<OperatorBase>(new cls(*this)); \
#define DEFINE_OP_CLONE_METHOD(cls)
\
std::unique_ptr<
::paddle::framework::
OperatorBase> Clone() const final { \
return std::unique_ptr<
::paddle::framework::
OperatorBase>(new cls(*this)); \
}
// Macro for define a default constructor for Operator.
...
...
paddle/framework/tensor_array.h
浏览文件 @
e71b836f
...
...
@@ -87,12 +87,12 @@ class TensorArray {
LoDTensor
Stack
()
const
;
/*
* Un
p
acks the given division of a rank-`R` tensor into rank-`(R-1)` tensors.
* Un
st
acks the given division of a rank-`R` tensor into rank-`(R-1)` tensors.
*/
void
Unstack
(
const
LoDTensor
&
source
)
const
;
/*
* Un
p
acks the given division of a rank-`R` tensor into rank-`(R-1)` tensors,
* Un
st
acks the given division of a rank-`R` tensor into rank-`(R-1)` tensors,
* with memory of tensors shared.
*/
void
UnstackShared
(
const
LoDTensor
&
source
)
const
;
...
...
paddle/framework/var_desc.cc
浏览文件 @
e71b836f
...
...
@@ -32,5 +32,13 @@ std::vector<int64_t> VarDescBind::Shape() const {
DataType
VarDescBind
::
GetDataType
()
const
{
return
desc_
.
lod_tensor
().
data_type
();
}
void
VarDescBind
::
SetLoDLevel
(
int32_t
lod_level
)
{
desc_
.
mutable_lod_tensor
()
->
set_lod_level
(
lod_level
);
}
int32_t
VarDescBind
::
GetLodLevel
()
const
{
return
desc_
.
lod_tensor
().
lod_level
();
}
}
// namespace framework
}
// namespace paddle
paddle/framework/var_desc.h
浏览文件 @
e71b836f
...
...
@@ -66,6 +66,10 @@ class VarDescBind {
DataType
GetDataType
()
const
;
void
SetLoDLevel
(
int32_t
lod_level
);
int32_t
GetLodLevel
()
const
;
private:
VarDesc
desc_
;
};
...
...
paddle/operators/CMakeLists.txt
浏览文件 @
e71b836f
...
...
@@ -133,3 +133,4 @@ cc_test(gather_test SRCS gather_test.cc DEPS tensor)
cc_test
(
net_op_test SRCS net_op_test.cc DEPS net_op
)
cc_test
(
scatter_test SRCS scatter_test.cc DEPS tensor
)
cc_test
(
strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory
)
cc_test
(
dynamic_recurrent_op_test SRCS dynamic_recurrent_op_test.cc DEPS dynamic_recurrent_op recurrent_op tensor_array
)
paddle/operators/dynamic_recurrent_op.cc
0 → 100644
浏览文件 @
e71b836f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve .
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/dynamic_recurrent_op.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Scope
;
using
framework
::
TensorArray
;
using
framework
::
LoDTensor
;
using
framework
::
Variable
;
namespace
detail
{
inline
void
CreateVariables
(
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
var_names
)
{
for
(
const
auto
&
name
:
var_names
)
{
scope
.
NewVar
(
name
);
}
}
}
// namespace detail
class
DynamicRecurrentOpProtoAndCheckerMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
DynamicRecurrentOpProtoAndCheckerMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
const
auto
&
name
=
DynamicRecurrentOp
::
kArgName
;
// inputs and outputs stored in proto
AddInput
(
name
.
inlinks
,
"the inputs that need to be segmented for each step."
)
.
AsDuplicable
();
AddInput
(
name
.
boot_memories
,
"variables to initialize memories."
)
.
AsDuplicable
();
AddOutput
(
name
.
outlinks
,
"the outputs that need to concated for all steps."
)
.
AsDuplicable
();
AddOutput
(
name
.
step_scopes
,
"step scopes"
);
// Attributes stored in AttributeMap
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
pre_memories
,
"names of pre-memories"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
memories
,
"names of memories"
);
AddComment
(
"This is a RNN operator for varience-length sequences."
);
}
};
void
DynamicRecurrentOp
::
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
cache_
.
Init
(
kArgName
,
*
this
,
scope
,
&
arg_
);
SplitInputs
();
CreateScopes
();
WriteStepInputs
();
InitStates
();
// call stepnet in all the time steps
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
auto
&
step_scope
=
cache_
.
GetScope
(
step
);
stepnet_
->
Run
(
step_scope
,
dev_ctx
);
}
WriteStepOutputs
();
ConcatOutputs
();
}
void
DynamicRecurrentOp
::
SplitInputs
()
const
{
// TODO(superjom) make level a config
// TODO(superjom) check all the inputs has the same LoD
int
level
=
0
;
const
auto
&
inlinks
=
cache_
.
inlinks
;
for
(
const
auto
&
item
:
inlinks
)
{
const
auto
&
var
=
item
.
second
;
const
auto
&
tensor
=
var
->
Get
<
LoDTensor
>
();
TensorArray
&
ta
=
step_inputs_
[
item
.
first
];
dy_seq_metas_
[
item
.
first
]
=
ta
.
Unpack
(
tensor
,
level
,
true
/*length_descend*/
);
if
(
cache_
.
num_steps
)
{
PADDLE_ENFORCE_EQ
(
ta
.
size
(),
cache_
.
num_steps
,
"inputs should have the same steps"
);
}
else
{
cache_
.
num_steps
=
ta
.
size
();
}
}
}
void
DynamicRecurrentOp
::
WriteStepInputs
()
const
{
for
(
const
auto
&
item
:
cache_
.
inlinks
)
{
auto
ta_it
=
step_inputs_
.
find
(
item
.
first
);
PADDLE_ENFORCE
(
ta_it
!=
step_inputs_
.
end
(),
"step_inputs_ not compatible with memory set"
);
TensorArray
&
ta
=
ta_it
->
second
;
for
(
size_t
step
=
0
;
step
<
ta
.
size
();
step
++
)
{
auto
tensor
=
ta
.
Read
(
step
);
auto
&
step_scope
=
cache_
.
GetScope
(
step
);
Variable
*
var
=
step_scope
.
FindVar
(
item
.
first
);
if
(
var
==
nullptr
)
{
var
=
step_scope
.
NewVar
(
item
.
first
);
}
var
->
GetMutable
<
LoDTensor
>
()
->
ShareDataWith
<
value_type
>
(
tensor
);
}
}
}
void
DynamicRecurrentOp
::
WriteStepOutputs
()
const
{
for
(
size_t
step
=
0
;
step
<
cache_
.
scopes
->
size
();
step
++
)
{
auto
&
scope
=
cache_
.
GetScope
(
step
);
for
(
auto
&
item
:
step_outputs_
)
{
auto
*
var
=
scope
.
FindVar
(
item
.
first
);
if
(
var
==
nullptr
)
{
var
=
scope
.
NewVar
(
item
.
first
);
}
auto
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
item
.
second
.
WriteShared
(
step
,
*
tensor
);
}
}
}
void
DynamicRecurrentOp
::
CreateScopes
()
const
{
PADDLE_ENFORCE_GT
(
cache_
.
num_steps
,
0
);
// resize scopes
size_t
num_scopes_need_create
=
cache_
.
num_steps
-
cache_
.
scopes
->
size
();
for
(
size_t
i
=
0
;
i
<
num_scopes_need_create
;
i
++
)
{
cache_
.
scopes
->
emplace_back
(
&
cache_
.
scope
->
NewScope
());
}
// init temporary inputs
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
,
"stepnet should be set first"
);
std
::
vector
<
std
::
string
>
memories
;
std
::
vector
<
std
::
string
>
pre_memories
;
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memories
.
end
(),
std
::
back_inserter
(
memories
),
[](
const
rnn
::
MemoryAttr
&
m
)
{
return
m
.
var
;
});
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memories
.
end
(),
std
::
back_inserter
(
pre_memories
),
[](
const
rnn
::
MemoryAttr
&
m
)
{
return
m
.
pre_var
;
});
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
auto
&
scope
=
cache_
.
GetScope
(
step
);
detail
::
CreateVariables
(
scope
,
arg_
.
inlinks
);
detail
::
CreateVariables
(
scope
,
arg_
.
outlinks
);
detail
::
CreateVariables
(
scope
,
memories
);
detail
::
CreateVariables
(
scope
,
pre_memories
);
}
}
void
DynamicRecurrentOp
::
ConcatOutputs
()
const
{
// TODO(superjom) transform this to a config
int
level
=
0
;
// TODO(superjom) pass in some lod
// just a placeholder
framework
::
LoD
lod
;
for
(
auto
&
item
:
step_outputs_
)
{
auto
tensor
=
item
.
second
.
Pack
(
level
,
dy_seq_metas_
[
item
.
first
],
lod
);
auto
&
output
=
cache_
.
outlinks
[
item
.
first
]
->
Get
<
LoDTensor
>
();
const_cast
<
LoDTensor
*>
(
&
output
)
->
ShareDataWith
<
value_type
>
(
tensor
);
}
}
void
DynamicRecurrentOp
::
InitStates
()
const
{
// init the first state
// TODO(superjom) parepare the scenerio that boot state not exists
for
(
auto
memory
:
arg_
.
memories
)
{
auto
*
boot_state_var
=
cache_
.
scope
->
FindVar
(
memory
.
boot_var
);
PADDLE_ENFORCE_NOT_NULL
(
boot_state_var
);
auto
&
boot_state
=
boot_state_var
->
Get
<
LoDTensor
>
();
const
auto
&
dims
=
boot_state
.
dims
();
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
auto
&
cur_scope
=
cache_
.
GetScope
(
step
);
// link pre-state to boot_state
// init state and pre-state
auto
*
pre_state
=
cur_scope
.
FindVar
(
memory
.
pre_var
);
PADDLE_ENFORCE_NOT_NULL
(
pre_state
);
pre_state
->
GetMutable
<
LoDTensor
>
();
auto
*
state
=
cur_scope
.
FindVar
(
memory
.
var
);
PADDLE_ENFORCE_NOT_NULL
(
state
);
state
->
GetMutable
<
LoDTensor
>
()
->
Resize
(
dims
);
state
->
GetMutable
<
LoDTensor
>
()
->
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
if
(
step
==
0
)
{
auto
*
pre_state_tensor
=
pre_state
->
GetMutable
<
LoDTensor
>
();
pre_state_tensor
->
Resize
(
boot_state
.
dims
());
pre_state_tensor
->
ShareDataWith
<
value_type
>
(
boot_state
);
}
else
{
auto
&
pre_scope
=
cache_
.
GetScope
(
step
-
1
);
auto
*
state_pre
=
pre_scope
.
FindVar
(
memory
.
var
);
PADDLE_ENFORCE_NOT_NULL
(
state_pre
);
pre_state
->
GetMutable
<
LoDTensor
>
()
->
ShareDataWith
<
value_type
>
(
*
state_pre
->
GetMutable
<
LoDTensor
>
());
}
}
}
}
void
DynamicRecurrentOp
::
ArgCache
::
Init
(
const
rnn
::
ArgumentName
&
name
,
const
paddle
::
framework
::
OperatorBase
&
op
,
const
paddle
::
framework
::
Scope
&
scope
,
rnn
::
Argument
*
arg
)
{
this
->
scope
=
&
scope
;
InitArgument
(
name
,
op
,
arg
);
CacheScopes
(
scope
,
*
arg
);
CacheInlinks
(
scope
,
arg
->
inlinks
);
CacheOutlinks
(
scope
,
arg
->
outlinks
);
}
void
DynamicRecurrentOp
::
ArgCache
::
InitArgument
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
rnn
::
Argument
*
arg
)
{
rnn
::
InitArgument
(
name
,
arg
,
op
,
false
/*is_grad*/
);
}
void
DynamicRecurrentOp
::
ArgCache
::
CacheScopes
(
const
Scope
&
scope
,
const
rnn
::
Argument
&
arg
)
{
auto
scopes_var
=
scope
.
FindVar
(
arg
.
step_scopes
);
PADDLE_ENFORCE
(
scopes_var
!=
nullptr
,
"the step_scopes output argument [%s] should be created first "
"by framework."
,
arg
.
step_scopes
);
this
->
scopes
=
scopes_var
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
}
void
DynamicRecurrentOp
::
ArgCache
::
CacheInlinks
(
const
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
names
)
{
for
(
auto
name
:
names
)
{
auto
*
var
=
GetVariable
(
scope
,
name
);
inlinks
[
name
]
=
var
;
}
}
void
DynamicRecurrentOp
::
ArgCache
::
CacheOutlinks
(
const
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
names
)
{
for
(
auto
name
:
names
)
{
auto
*
var
=
GetVariable
(
scope
,
name
);
outlinks
[
name
]
=
var
;
}
}
Variable
*
DynamicRecurrentOp
::
ArgCache
::
GetVariable
(
const
Scope
&
scope
,
const
std
::
string
&
name
)
{
auto
*
var
=
scope
.
FindVar
(
name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
"variable [%s] not exist in scope"
,
name
);
return
var
;
}
const
rnn
::
ArgumentName
DynamicRecurrentOp
::
kArgName
{
"step_net"
,
"step_scopes"
,
"inlinks"
,
"outlinks"
,
"memories"
,
"pre_memories"
,
"boot_memories"
};
void
DynamicRecurrentGradientOp
::
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{}
}
// namespace operators
}
// namespace paddle
REGISTER_OP_WITHOUT_GRADIENT
(
dynamic_recurrent
,
paddle
::
operators
::
DynamicRecurrentOp
,
paddle
::
operators
::
DynamicRecurrentOpProtoAndCheckerMaker
);
paddle/operators/dynamic_recurrent_op.h
0 → 100644
浏览文件 @
e71b836f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_TESTING
#include "gtest/gtest.h"
#endif
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor_array.h"
#include "paddle/framework/variable.h"
#include "paddle/operators/rnn/recurrent_op_utils.h"
namespace
paddle
{
namespace
operators
{
class
DynamicRecurrentOp
:
public
framework
::
OperatorBase
{
public:
static
const
rnn
::
ArgumentName
kArgName
;
using
value_type
=
float
;
DynamicRecurrentOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
DynamicRecurrentOp
(
const
DynamicRecurrentOp
&
o
)
:
framework
::
OperatorBase
(
static_cast
<
const
framework
::
OperatorBase
&>
(
o
))
{
// TODO(yuyang18): Implement copy ctor well.
PADDLE_THROW
(
"Not implemented"
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
;
/*
* Split the inputs(LoDTensors) to segments for each time step.
*/
void
SplitInputs
()
const
;
/*
* Create step-scopes to store temporary outputs in each time steps.
*/
void
CreateScopes
()
const
;
/*
* Link TensorArray steps to the corresponding variables located in
* step-scopes.
*/
void
WriteStepInputs
()
const
;
/*
* Write output of each step to the corresponding TensorArray.
*/
void
WriteStepOutputs
()
const
;
/*
* Initialize the states, each state will have a corresponding pre-state,
* which share the memory with the state in the previous time state. The
* pre-state in the first time step will be initialized with an zero tensor or
* a tensor in parent scope if is provided.
*/
void
InitStates
()
const
;
/*
* Concatenate outputs in each time step and generate a LoDTensor.
*/
void
ConcatOutputs
()
const
;
/*
* set a stepnet that is created according to a RecurrentOp's stepnet.
*/
void
SetStepNet
(
std
::
unique_ptr
<
OperatorBase
>
net
)
{
PADDLE_ENFORCE_NOT_NULL
(
net
);
stepnet_
=
std
::
move
(
net
);
}
const
OperatorBase
&
GetStepNet
()
const
{
return
*
stepnet_
;
}
protected:
struct
ArgCache
{
framework
::
Scope
const
*
scope
;
std
::
vector
<
framework
::
Scope
*>*
scopes
;
std
::
map
<
std
::
string
,
framework
::
Variable
*>
inlinks
;
std
::
map
<
std
::
string
,
framework
::
Variable
*>
outlinks
;
size_t
num_steps
{
0
};
void
Init
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
const
framework
::
Scope
&
scope
,
rnn
::
Argument
*
arg
);
framework
::
Scope
&
GetScope
(
size_t
index
)
{
PADDLE_ENFORCE_LT
(
index
,
num_steps
);
return
*
scopes
->
at
(
index
);
}
private:
void
InitArgument
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
rnn
::
Argument
*
arg
);
void
CacheScopes
(
const
framework
::
Scope
&
scope
,
const
rnn
::
Argument
&
arg
);
void
CacheInlinks
(
const
framework
::
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
names
);
void
CacheOutlinks
(
const
framework
::
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
names
);
framework
::
Variable
*
GetVariable
(
const
framework
::
Scope
&
scope
,
const
std
::
string
&
name
);
};
private:
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
mutable
framework
::
TensorArray
states_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_inputs_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_outputs_
;
mutable
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
DySeqMeta
>>
dy_seq_metas_
;
mutable
rnn
::
Argument
arg_
;
mutable
ArgCache
cache_
;
#ifdef PADDLE_WITH_TESTING
friend
class
DynamicRecurrentOpTestHelper
;
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
SplitInputs
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
CreateCache
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
CreateScopes
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
WriteStepInputs
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
WriteStepOutputs
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
InitStates
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
ConcatOutputs
);
#endif
};
class
DynamicRecurrentGradientOp
:
public
framework
::
OperatorBase
{
public:
DynamicRecurrentGradientOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
;
};
}
// namespace operators
}
// namespace paddle
paddle/operators/dynamic_recurrent_op_test.cc
0 → 100644
浏览文件 @
e71b836f
#include "paddle/operators/dynamic_recurrent_op.h"
#include <gtest/gtest.h>
#include "paddle/framework/ddim.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_desc.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Scope
;
using
framework
::
TensorArray
;
using
framework
::
LoDTensor
;
using
framework
::
Variable
;
class
TestOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
DEFINE_OP_CLONE_METHOD
(
TestOp
);
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
};
void
OpDescNewVar
(
const
std
::
string
&
param_name
,
std
::
initializer_list
<
const
char
*>
arguments
,
paddle
::
framework
::
OpDesc
::
Var
*
var
)
{
var
->
set_parameter
(
param_name
);
for
(
auto
&
arg_name
:
arguments
)
{
var
->
add_arguments
(
arg_name
);
}
}
// create a LoD tensor in scope with specific dims
LoDTensor
*
CreateVar
(
Scope
&
scope
,
std
::
string
name
,
framework
::
DDim
dims
,
const
platform
::
Place
&
place
)
{
auto
*
var
=
scope
.
NewVar
(
name
);
auto
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
tensor
->
Resize
(
dims
);
tensor
->
mutable_data
<
float
>
(
place
);
return
tensor
;
}
class
DynamicRecurrentOpTestHelper
:
public
::
testing
::
Test
{
protected:
const
rnn
::
ArgumentName
argname
=
DynamicRecurrentOp
::
kArgName
;
virtual
void
SetUp
()
override
{
CreateGlobalVariables
();
auto
op_desc
=
CreateOpDesc
();
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
dop
=
dynamic_cast
<
DynamicRecurrentOp
*>
(
op
.
get
());
InitCacheManually
();
InitStepNet
();
}
framework
::
OpDesc
CreateOpDesc
()
{
// create op
paddle
::
framework
::
OpDesc
op_desc
;
op_desc
.
set_type
(
"dynamic_recurrent"
);
OpDescNewVar
(
argname
.
inlinks
,
{
"in0"
},
op_desc
.
add_inputs
());
OpDescNewVar
(
argname
.
boot_memories
,
{
"boot_mem"
},
op_desc
.
add_inputs
());
OpDescNewVar
(
argname
.
step_scopes
,
{
"step_scopes"
},
op_desc
.
add_outputs
());
OpDescNewVar
(
argname
.
outlinks
,
{
"out0"
},
op_desc
.
add_outputs
());
// set pre-memories
auto
pre_memories
=
op_desc
.
mutable_attrs
()
->
Add
();
pre_memories
->
set_name
(
argname
.
pre_memories
);
pre_memories
->
set_type
(
paddle
::
framework
::
AttrType
::
STRINGS
);
auto
pre_memories_item
=
pre_memories
->
add_strings
();
*
pre_memories_item
=
"mem@pre"
;
// set memories
auto
memories
=
op_desc
.
mutable_attrs
()
->
Add
();
memories
->
set_name
(
argname
.
memories
);
memories
->
set_type
(
paddle
::
framework
::
AttrType
::
STRINGS
);
auto
memories_item
=
memories
->
add_strings
();
*
memories_item
=
"mem"
;
return
op_desc
;
}
void
CreateGlobalVariables
()
{
platform
::
CPUPlace
place
;
scope
.
NewVar
(
"step_scopes"
);
CreateVar
(
scope
,
"boot_mem"
,
framework
::
make_ddim
({
10
,
20
}),
place
);
// auto* out0 =
CreateVar
(
scope
,
"out0"
,
framework
::
make_ddim
({
10
,
20
}),
place
);
auto
*
in0
=
CreateVar
(
scope
,
"in0"
,
framework
::
make_ddim
({
10
,
8
}),
place
);
// 10 instanes with 4 sentences, length is 4, 3, 2, 1 respectively.
framework
::
LoD
in0_lod
(
1
);
for
(
int
x
:
std
::
vector
<
int
>
{
0
,
4
,
7
,
9
,
10
})
{
in0_lod
[
0
].
push_back
(
x
);
}
in0
->
set_lod
(
in0_lod
);
in0
->
Resize
(
framework
::
make_ddim
({
10
,
8
}));
// set the content, each sentence content is seqid.batchid
// the seqid starts from 0
int
start
=
0
;
for
(
size_t
seqid
=
0
;
seqid
<
in0_lod
.
size
()
-
1
;
seqid
++
)
{
for
(
size_t
batchid
=
0
;
batchid
<
in0_lod
[
0
][
seqid
+
1
]
-
in0_lod
[
0
][
seqid
];
batchid
++
)
{
float
v
=
seqid
+
batchid
*
0.1
;
for
(
size_t
dim
=
0
;
dim
<
8
;
dim
++
)
{
in0
->
data
<
float
>
()[
start
*
8
+
dim
]
=
v
;
}
start
++
;
}
}
}
void
InitCacheManually
()
{
dop
->
cache_
.
Init
(
DynamicRecurrentOp
::
kArgName
,
*
dop
,
scope
,
&
dop
->
arg_
);
}
void
InitStepNet
()
{
std
::
unique_ptr
<
framework
::
OperatorBase
>
stepnet
{
new
NetOp
};
dynamic_cast
<
NetOp
*>
(
stepnet
.
get
())
->
AppendOp
(
std
::
unique_ptr
<
TestOp
>
(
new
TestOp
(
"test"
,
{{
"inlinks"
,
{
"in0"
}},
{
"boot_memories"
,
{
"boot_mem"
}}},
{{
"outlinks"
,
{
"out0"
}},
{
"step_scopes"
,
{
"step_scopes"
}}},
{})));
dop
->
SetStepNet
(
std
::
move
(
stepnet
));
}
protected:
DynamicRecurrentOp
*
dop
;
std
::
unique_ptr
<
framework
::
OperatorBase
>
op
;
paddle
::
platform
::
CPUDeviceContext
device_context
;
paddle
::
framework
::
Scope
scope
;
};
TEST_F
(
DynamicRecurrentOpTestHelper
,
CreateCache
)
{
const
rnn
::
Argument
&
arg
=
dop
->
arg_
;
ASSERT_EQ
(
arg
.
inlinks
.
size
(),
1UL
);
ASSERT_EQ
(
arg
.
outlinks
.
size
(),
1UL
);
}
TEST_F
(
DynamicRecurrentOpTestHelper
,
SplitInputs
)
{
dop
->
SplitInputs
();
auto
&
in0_ta
=
dop
->
step_inputs_
[
"in0"
];
ASSERT_EQ
(
in0_ta
.
size
(),
4UL
);
const
auto
&
batch0
=
in0_ta
.
Read
(
0
);
const
auto
&
batch1
=
in0_ta
.
Read
(
1
);
const
auto
&
batch2
=
in0_ta
.
Read
(
2
);
const
auto
&
batch3
=
in0_ta
.
Read
(
3
);
EXPECT_EQ
(
batch0
.
dims
()[
0
],
4
);
EXPECT_EQ
(
batch1
.
dims
()[
0
],
3
);
EXPECT_EQ
(
batch2
.
dims
()[
0
],
2
);
EXPECT_EQ
(
batch3
.
dims
()[
0
],
1
);
}
TEST_F
(
DynamicRecurrentOpTestHelper
,
CreateScopes
)
{
dop
->
SplitInputs
();
dop
->
CreateScopes
();
ASSERT_EQ
(
dop
->
cache_
.
num_steps
,
4UL
);
ASSERT_EQ
(
dop
->
cache_
.
scopes
->
size
(),
4UL
);
}
TEST_F
(
DynamicRecurrentOpTestHelper
,
WriteStepInputs
)
{
dop
->
SplitInputs
();
dop
->
CreateScopes
();
dop
->
WriteStepInputs
();
for
(
size_t
step
=
0
;
step
<
dop
->
cache_
.
num_steps
;
step
++
)
{
auto
&
scope
=
dop
->
cache_
.
GetScope
(
step
);
for
(
auto
name
:
std
::
vector
<
std
::
string
>
({
"in0"
}))
{
ASSERT_TRUE
(
scope
.
FindVar
(
name
)
!=
nullptr
);
}
}
}
TEST_F
(
DynamicRecurrentOpTestHelper
,
WriteStepOutputs
)
{
dop
->
SplitInputs
();
dop
->
CreateScopes
();
dop
->
WriteStepInputs
();
dop
->
WriteStepOutputs
();
for
(
size_t
step
=
0
;
step
<
dop
->
cache_
.
num_steps
;
step
++
)
{
auto
&
scope
=
dop
->
cache_
.
GetScope
(
step
);
for
(
auto
name
:
std
::
vector
<
std
::
string
>
({
"out0"
}))
{
ASSERT_TRUE
(
scope
.
FindVar
(
name
));
}
}
}
TEST_F
(
DynamicRecurrentOpTestHelper
,
ConcatOutputs
)
{
// Let's leave this test to python unittest.
}
TEST_F
(
DynamicRecurrentOpTestHelper
,
InitStates
)
{
dop
->
SplitInputs
();
dop
->
CreateScopes
();
dop
->
WriteStepInputs
();
dop
->
WriteStepOutputs
();
dop
->
InitStates
();
for
(
size_t
step
=
0
;
step
<
dop
->
cache_
.
num_steps
;
step
++
)
{
auto
&
scope
=
dop
->
cache_
.
GetScope
(
step
);
auto
state
=
scope
.
FindVar
(
"mem"
);
ASSERT_TRUE
(
state
!=
nullptr
);
auto
*
pre_state
=
scope
.
FindVar
(
"mem@pre"
);
ASSERT_TRUE
(
pre_state
!=
nullptr
);
auto
*
boot_state
=
scope
.
FindVar
(
"boot_mem"
);
ASSERT_TRUE
(
boot_state
!=
nullptr
);
if
(
step
==
0
)
{
// check pre_state is a reference of boot_state
ASSERT_EQ
(
boot_state
->
Get
<
LoDTensor
>
().
data
<
float
>
(),
pre_state
->
Get
<
LoDTensor
>
().
data
<
float
>
());
}
}
}
}
// operators
}
// namespace paddle
paddle/pybind/protobuf.cc
浏览文件 @
e71b836f
...
...
@@ -166,7 +166,9 @@ void BindVarDsec(py::module &m) {
.
def
(
"set_shape"
,
&
VarDescBind
::
SetShape
)
.
def
(
"set_data_type"
,
&
VarDescBind
::
SetDataType
)
.
def
(
"shape"
,
&
VarDescBind
::
Shape
,
py
::
return_value_policy
::
reference
)
.
def
(
"data_type"
,
&
VarDescBind
::
GetDataType
);
.
def
(
"data_type"
,
&
VarDescBind
::
GetDataType
)
.
def
(
"lod_level"
,
&
VarDescBind
::
GetLodLevel
)
.
def
(
"set_lod_level"
,
&
VarDescBind
::
SetLoDLevel
);
}
void
BindOpDesc
(
py
::
module
&
m
)
{
...
...
@@ -196,7 +198,8 @@ void BindOpDesc(py::module &m) {
.
def
(
"set_attr"
,
&
OpDescBind
::
SetAttr
)
.
def
(
"attr"
,
&
OpDescBind
::
GetAttr
)
.
def
(
"set_block_attr"
,
&
OpDescBind
::
SetBlockAttr
)
.
def
(
"block_attr"
,
&
OpDescBind
::
GetBlockAttr
);
.
def
(
"block_attr"
,
&
OpDescBind
::
GetBlockAttr
)
.
def
(
"infer_shape"
,
&
OpDescBind
::
InferShape
);
}
}
// namespace pybind
...
...
paddle/pybind/pybind.cc
浏览文件 @
e71b836f
...
...
@@ -231,21 +231,6 @@ All parameter, weight, gradient are variables in Paddle.
desc
.
InitializationErrorString
());
return
OpRegistry
::
CreateOp
(
desc
);
})
.
def_static
(
"infer_shape"
,
[](
OpDescBind
&
op_desc
,
BlockDescBind
&
block
)
{
auto
op
=
OpRegistry
::
CreateOp
(
*
op_desc
.
Proto
());
auto
*
op_with_kernel
=
dynamic_cast
<
OperatorWithKernel
*>
(
op
.
get
());
if
(
op_with_kernel
!=
nullptr
)
{
auto
ctx
=
CompileTimeInferShapeContext
(
op_desc
,
block
);
op_with_kernel
->
InferShape
(
&
ctx
);
}
else
{
PADDLE_THROW
(
"OP(%s) is not type of OperatorWithKernel, "
"should not call this function"
,
op_desc
.
Type
());
}
})
.
def
(
"backward"
,
[](
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
...
...
python/paddle/v2/framework/graph.py
浏览文件 @
e71b836f
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.proto.framework_pb2
as
framework_pb2
import
collections
import
numpy
as
np
import
copy
__all__
=
[
'Block'
,
'Variable'
,
'Program'
,
'Operator'
]
...
...
@@ -40,35 +42,104 @@ class OpProtoHolder(object):
class
Variable
(
object
):
def
__init__
(
self
,
block
,
name
=
None
,
shape
=
None
,
dtype
=
None
,
lod_level
=
None
):
def
__init__
(
self
,
block
,
name
=
None
,
shape
=
None
,
dtype
=
None
,
lod_level
=
None
,
**
kwargs
):
self
.
block
=
block
if
name
is
None
:
name
=
Variable
.
_unique_var_name_
()
self
.
desc
=
self
.
block
.
desc
.
new_var
(
name
)
try
:
self
.
desc
=
self
.
block
.
desc
.
var
(
name
)
is_new_var
=
False
except
core
.
EnforceNotMet
:
self
.
desc
=
self
.
block
.
desc
.
new_var
(
name
)
is_new_var
=
True
if
shape
is
not
None
:
self
.
desc
.
set_shape
(
shape
)
if
is_new_var
:
self
.
desc
.
set_shape
(
shape
)
else
:
old_shape
=
self
.
shape
shape
=
tuple
(
shape
)
if
shape
!=
old_shape
:
raise
ValueError
(
"Variable {0} has been created before. the previous "
"shape is {1}; the new shape is {2}. They are not "
"matched."
.
format
(
self
.
name
,
old_shape
,
shape
))
if
dtype
is
not
None
:
# TODO(yuyang18): Convert dtype from numpy.dtype
self
.
desc
.
set_data_type
(
dtype
)
if
not
isinstance
(
dtype
,
core
.
DataType
):
dtype
=
Variable
.
_convert_np_dtype_to_dtype_
(
dtype
)
if
is_new_var
:
self
.
desc
.
set_data_type
(
dtype
)
else
:
old_dtype
=
self
.
data_type
()
if
dtype
!=
old_shape
:
raise
ValueError
(
"Variable {0} has been created before. "
"The previous data type is {1}; the new "
"data type is {2}. They are not "
"matched."
.
format
(
self
.
name
,
old_dtype
,
dtype
))
if
lod_level
is
not
None
:
# TODO(yuyang18): set_lod_level is not defined.
self
.
desc
.
set_lod_level
(
lod_level
)
if
is_new_var
:
self
.
desc
.
set_lod_level
(
lod_level
)
else
:
if
lod_level
!=
self
.
lod_level
:
raise
ValueError
(
"Variable {0} has been created before. "
"The previous lod_level is {1}; the new "
"lod_level is {2}. They are not "
"matched"
.
format
(
self
.
name
,
self
.
lod_level
,
lod_level
))
self
.
block
.
vars
[
name
]
=
self
self
.
op
=
None
# TODO(yuyang18): Get methods
@
property
def
name
(
self
):
return
self
.
desc
.
name
()
@
property
def
shape
(
self
):
# convert to tuple, make it as same as numpy API.
return
tuple
(
self
.
desc
.
shape
())
@
property
def
data_type
(
self
):
return
self
.
desc
.
data_type
()
@
property
def
lod_level
(
self
):
return
self
.
desc
.
lod_level
()
@
staticmethod
def
_unique_var_name_
():
uid
=
core
.
unique_integer
()
# unique during whole process.
return
"_generated_var_%d"
%
uid
@
staticmethod
def
_convert_np_dtype_to_dtype_
(
np_dtype
):
dtype
=
np
.
dtype
(
np_dtype
)
if
dtype
==
np
.
float32
:
return
core
.
DataType
.
FP32
elif
dtype
==
np
.
float64
:
return
core
.
DataType
.
FP64
elif
dtype
==
np
.
float16
:
return
core
.
DataType
.
FP16
elif
dtype
==
np
.
int32
:
return
core
.
DataType
.
INT32
elif
dtype
==
np
.
int16
:
return
core
.
DataType
.
INT16
elif
dtype
==
np
.
int64
:
return
core
.
DataType
.
INT64
elif
dtype
==
np
.
bool
:
return
core
.
DataType
.
BOOL
else
:
raise
ValueError
(
"Not supported numpy dtype "
+
str
(
dtype
))
class
Operator
(
object
):
def
__init__
(
self
,
block
,
desc
,
type
,
inputs
=
None
,
outputs
=
None
,
...
...
@@ -169,6 +240,10 @@ class Block(object):
def
create_var
(
self
,
*
args
,
**
kwargs
):
return
Variable
(
self
,
*
args
,
**
kwargs
)
def
create_parameter
(
self
,
*
args
,
**
kwargs
):
global_block
=
self
.
program
.
global_block
()
return
Parameter
(
global_block
,
*
args
,
**
kwargs
)
def
append_op
(
self
,
*
args
,
**
kwargs
):
op_desc
=
self
.
desc
.
append_op
()
op
=
Operator
(
self
,
op_desc
,
*
args
,
**
kwargs
)
...
...
@@ -215,5 +290,41 @@ class Program(object):
self
.
current_block_idx
=
self
.
current_block
().
parent_idx
class
Parameter
(
Variable
):
def
__init__
(
self
,
block
,
shape
,
dtype
,
**
kwargs
):
if
shape
is
None
or
dtype
is
None
:
raise
ValueError
(
"Parameter must set shape and dtype"
)
if
len
(
shape
)
==
0
:
raise
ValueError
(
"Parameter shape cannot be empty"
)
for
each
in
shape
:
if
each
<
0
:
raise
ValueError
(
"Parameter shape should not be related with "
"batch-size"
)
Variable
.
__init__
(
self
,
block
,
shape
=
shape
,
dtype
=
dtype
,
**
kwargs
)
self
.
trainable
=
kwargs
.
get
(
'trainable'
,
True
)
self
.
init_attr
=
kwargs
.
get
(
'initialize_attr'
,
{
'type'
:
'uniform_random'
,
'min'
:
-
1.0
,
'max'
:
1.0
})
self
.
optimize_attr
=
kwargs
.
get
(
'optimize_attr'
,
{
'learning_rate'
:
1.0
})
self
.
_append_initialize_ops_
()
def
_append_initialize_ops_
(
self
):
attr
=
copy
.
deepcopy
(
self
.
init_attr
)
op_type
=
attr
.
pop
(
'type'
,
None
)
block
=
self
.
block
assert
isinstance
(
block
,
Block
)
shape
=
self
.
shape
attr
[
'dims'
]
=
shape
attr
[
'data_type'
]
=
int
(
self
.
data_type
)
op
=
block
.
prepend_op
(
type
=
op_type
,
inputs
=
None
,
outputs
=
{
'Out'
:
[
self
]},
attrs
=
attr
)
self
.
op
=
op
# program is a global instance.
g_program
=
Program
.
instance
()
python/paddle/v2/framework/tests/test_infer_shape.py
浏览文件 @
e71b836f
import
unittest
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
class
TestInferShape
(
unittest
.
TestCase
):
...
...
@@ -26,7 +26,7 @@ class TestInferShape(unittest.TestCase):
sum_op_desc
.
set_input
(
"X"
,
[
"x1"
,
"x2"
])
sum_op_desc
.
set_output
(
"Out"
,
[
"out"
])
core
.
Operator
.
infer_shape
(
sum_op_desc
,
block
)
sum_op_desc
.
infer_shape
(
block
)
self
.
assertEqual
(
out
.
shape
(),
shape
)
def
test_mul_op
(
self
):
...
...
@@ -55,7 +55,7 @@ class TestInferShape(unittest.TestCase):
mul_op_desc
.
set_attr
(
"x_num_col_dims"
,
1
)
mul_op_desc
.
set_attr
(
"y_num_col_dims"
,
1
)
core
.
Operator
.
infer_shape
(
mul_op_desc
,
block
)
mul_op_desc
.
infer_shape
(
block
)
self
.
assertEqual
(
out
.
shape
(),
[
x_shape
[
0
],
y_shape
[
1
]])
...
...
python/paddle/v2/framework/tests/test_parameter.py
0 → 100644
浏览文件 @
e71b836f
import
unittest
from
paddle.v2.framework.graph
import
g_program
import
paddle.v2.framework.core
as
core
class
TestParameter
(
unittest
.
TestCase
):
def
test_param
(
self
):
b
=
g_program
.
create_block
()
param
=
b
.
create_parameter
(
name
=
'fc.w'
,
shape
=
[
784
,
100
],
dtype
=
'float32'
,
initialize_attr
=
{
'type'
:
'uniform_random'
,
'seed'
:
13
,
'min'
:
-
5.0
,
'max'
:
5.0
})
self
.
assertIsNotNone
(
param
)
self
.
assertEqual
(
'fc.w'
,
param
.
name
)
self
.
assertEqual
((
784
,
100
),
param
.
shape
)
self
.
assertEqual
(
core
.
DataType
.
FP32
,
param
.
data_type
)
self
.
assertEqual
(
0
,
param
.
block
.
idx
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_variable.py
0 → 100644
浏览文件 @
e71b836f
import
unittest
from
paddle.v2.framework.graph
import
Variable
,
g_program
import
paddle.v2.framework.core
as
core
import
numpy
as
np
class
TestVariable
(
unittest
.
TestCase
):
def
test_np_dtype_convert
(
self
):
DT
=
core
.
DataType
convert
=
Variable
.
_convert_np_dtype_to_dtype_
self
.
assertEqual
(
DT
.
FP32
,
convert
(
np
.
float32
))
self
.
assertEqual
(
DT
.
FP16
,
convert
(
"float16"
))
self
.
assertEqual
(
DT
.
FP64
,
convert
(
"float64"
))
self
.
assertEqual
(
DT
.
INT32
,
convert
(
"int32"
))
self
.
assertEqual
(
DT
.
INT16
,
convert
(
"int16"
))
self
.
assertEqual
(
DT
.
INT64
,
convert
(
"int64"
))
self
.
assertEqual
(
DT
.
BOOL
,
convert
(
"bool"
))
self
.
assertRaises
(
ValueError
,
lambda
:
convert
(
"int8"
))
def
test_var
(
self
):
b
=
g_program
.
current_block
()
w
=
b
.
create_var
(
dtype
=
"float64"
,
shape
=
[
784
,
100
],
lod_level
=
0
,
name
=
"fc.w"
)
self
.
assertEqual
(
core
.
DataType
.
FP64
,
w
.
data_type
)
self
.
assertEqual
((
784
,
100
),
w
.
shape
)
self
.
assertEqual
(
"fc.w"
,
w
.
name
)
self
.
assertEqual
(
0
,
w
.
lod_level
)
w
=
b
.
create_var
(
name
=
'fc.w'
)
self
.
assertEqual
(
core
.
DataType
.
FP64
,
w
.
data_type
)
self
.
assertEqual
((
784
,
100
),
w
.
shape
)
self
.
assertEqual
(
"fc.w"
,
w
.
name
)
self
.
assertEqual
(
0
,
w
.
lod_level
)
self
.
assertRaises
(
ValueError
,
lambda
:
b
.
create_var
(
name
=
"fc.w"
,
shape
=
(
24
,
100
)))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录