Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e6d4d2bc
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e6d4d2bc
编写于
7月 11, 2022
作者:
W
Wenyu
提交者:
GitHub
7月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix export_model for swin (#6399)
上级
c3cda7a8
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
17 addition
and
19 deletion
+17
-19
configs/faster_rcnn/_base_/faster_rcnn_swin_reader.yml
configs/faster_rcnn/_base_/faster_rcnn_swin_reader.yml
+2
-4
ppdet/modeling/backbones/swin_transformer.py
ppdet/modeling/backbones/swin_transformer.py
+15
-15
未找到文件。
configs/faster_rcnn/_base_/faster_rcnn_swin_reader.yml
浏览文件 @
e6d4d2bc
...
...
@@ -30,14 +30,12 @@ EvalReader:
TestReader
:
inputs_def
:
image_shape
:
[
1
,
3
,
640
,
640
]
image_shape
:
[
-
1
,
3
,
640
,
640
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
640
,
640
],
keep_ratio
:
True
}
-
LetterBoxResize
:
{
target_size
:
640
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
ppdet/modeling/backbones/swin_transformer.py
浏览文件 @
e6d4d2bc
...
...
@@ -20,7 +20,6 @@ MIT License [see LICENSE for details]
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn.initializer
import
TruncatedNormal
,
Constant
,
Assign
from
ppdet.modeling.shape_spec
import
ShapeSpec
from
ppdet.core.workspace
import
register
,
serializable
import
numpy
as
np
...
...
@@ -64,7 +63,7 @@ def window_partition(x, window_size):
"""
B
,
H
,
W
,
C
=
x
.
shape
x
=
x
.
reshape
(
[
B
,
H
//
window_size
,
window_size
,
W
//
window_size
,
window_size
,
C
])
[
-
1
,
H
//
window_size
,
window_size
,
W
//
window_size
,
window_size
,
C
])
windows
=
x
.
transpose
([
0
,
1
,
3
,
2
,
4
,
5
]).
reshape
(
[
-
1
,
window_size
,
window_size
,
C
])
return
windows
...
...
@@ -80,10 +79,11 @@ def window_reverse(windows, window_size, H, W):
Returns:
x: (B, H, W, C)
"""
_
,
_
,
_
,
C
=
windows
.
shape
B
=
int
(
windows
.
shape
[
0
]
/
(
H
*
W
/
window_size
/
window_size
))
x
=
windows
.
reshape
(
[
B
,
H
//
window_size
,
W
//
window_size
,
window_size
,
window_size
,
-
1
])
x
=
x
.
transpose
([
0
,
1
,
3
,
2
,
4
,
5
]).
reshape
([
B
,
H
,
W
,
-
1
])
[
-
1
,
H
//
window_size
,
W
//
window_size
,
window_size
,
window_size
,
C
])
x
=
x
.
transpose
([
0
,
1
,
3
,
2
,
4
,
5
]).
reshape
([
-
1
,
H
,
W
,
C
])
return
x
...
...
@@ -158,14 +158,14 @@ class WindowAttention(nn.Layer):
"""
B_
,
N
,
C
=
x
.
shape
qkv
=
self
.
qkv
(
x
).
reshape
(
[
B_
,
N
,
3
,
self
.
num_heads
,
C
//
self
.
num_heads
]).
transpose
(
[
-
1
,
N
,
3
,
self
.
num_heads
,
C
//
self
.
num_heads
]).
transpose
(
[
2
,
0
,
3
,
1
,
4
])
q
,
k
,
v
=
qkv
[
0
],
qkv
[
1
],
qkv
[
2
]
q
=
q
*
self
.
scale
attn
=
paddle
.
mm
(
q
,
k
.
transpose
([
0
,
1
,
3
,
2
]))
index
=
self
.
relative_position_index
.
reshape
([
-
1
]
)
index
=
self
.
relative_position_index
.
flatten
(
)
relative_position_bias
=
paddle
.
index_select
(
self
.
relative_position_bias_table
,
index
)
...
...
@@ -179,7 +179,7 @@ class WindowAttention(nn.Layer):
if
mask
is
not
None
:
nW
=
mask
.
shape
[
0
]
attn
=
attn
.
reshape
([
B_
//
nW
,
nW
,
self
.
num_heads
,
N
,
N
attn
=
attn
.
reshape
([
-
1
,
nW
,
self
.
num_heads
,
N
,
N
])
+
mask
.
unsqueeze
(
1
).
unsqueeze
(
0
)
attn
=
attn
.
reshape
([
-
1
,
self
.
num_heads
,
N
,
N
])
attn
=
self
.
softmax
(
attn
)
...
...
@@ -189,7 +189,7 @@ class WindowAttention(nn.Layer):
attn
=
self
.
attn_drop
(
attn
)
# x = (attn @ v).transpose(1, 2).reshape([B_, N, C])
x
=
paddle
.
mm
(
attn
,
v
).
transpose
([
0
,
2
,
1
,
3
]).
reshape
([
B_
,
N
,
C
])
x
=
paddle
.
mm
(
attn
,
v
).
transpose
([
0
,
2
,
1
,
3
]).
reshape
([
-
1
,
N
,
C
])
x
=
self
.
proj
(
x
)
x
=
self
.
proj_drop
(
x
)
return
x
...
...
@@ -267,7 +267,7 @@ class SwinTransformerBlock(nn.Layer):
shortcut
=
x
x
=
self
.
norm1
(
x
)
x
=
x
.
reshape
([
B
,
H
,
W
,
C
])
x
=
x
.
reshape
([
-
1
,
H
,
W
,
C
])
# pad feature maps to multiples of window size
pad_l
=
pad_t
=
0
...
...
@@ -289,7 +289,7 @@ class SwinTransformerBlock(nn.Layer):
x_windows
=
window_partition
(
shifted_x
,
self
.
window_size
)
# nW*B, window_size, window_size, C
x_windows
=
x_windows
.
reshape
(
[
-
1
,
self
.
window_size
*
self
.
window_size
,
[
x_windows
.
shape
[
0
]
,
self
.
window_size
*
self
.
window_size
,
C
])
# nW*B, window_size*window_size, C
# W-MSA/SW-MSA
...
...
@@ -298,7 +298,7 @@ class SwinTransformerBlock(nn.Layer):
# merge windows
attn_windows
=
attn_windows
.
reshape
(
[
-
1
,
self
.
window_size
,
self
.
window_size
,
C
])
[
x_windows
.
shape
[
0
]
,
self
.
window_size
,
self
.
window_size
,
C
])
shifted_x
=
window_reverse
(
attn_windows
,
self
.
window_size
,
Hp
,
Wp
)
# B H' W' C
...
...
@@ -314,7 +314,7 @@ class SwinTransformerBlock(nn.Layer):
if
pad_r
>
0
or
pad_b
>
0
:
x
=
x
[:,
:
H
,
:
W
,
:]
x
=
x
.
reshape
([
B
,
H
*
W
,
C
])
x
=
x
.
reshape
([
-
1
,
H
*
W
,
C
])
# FFN
x
=
shortcut
+
self
.
drop_path
(
x
)
...
...
@@ -345,7 +345,7 @@ class PatchMerging(nn.Layer):
B
,
L
,
C
=
x
.
shape
assert
L
==
H
*
W
,
"input feature has wrong size"
x
=
x
.
reshape
([
B
,
H
,
W
,
C
])
x
=
x
.
reshape
([
-
1
,
H
,
W
,
C
])
# padding
pad_input
=
(
H
%
2
==
1
)
or
(
W
%
2
==
1
)
...
...
@@ -357,7 +357,7 @@ class PatchMerging(nn.Layer):
x2
=
x
[:,
0
::
2
,
1
::
2
,
:]
# B H/2 W/2 C
x3
=
x
[:,
1
::
2
,
1
::
2
,
:]
# B H/2 W/2 C
x
=
paddle
.
concat
([
x0
,
x1
,
x2
,
x3
],
-
1
)
# B H/2 W/2 4*C
x
=
x
.
reshape
([
B
,
H
*
W
//
4
,
4
*
C
])
# B H/2*W/2 4*C
x
=
x
.
reshape
([
-
1
,
H
*
W
//
4
,
4
*
C
])
# B H/2*W/2 4*C
x
=
self
.
norm
(
x
)
x
=
self
.
reduction
(
x
)
...
...
@@ -664,7 +664,7 @@ class SwinTransformer(nn.Layer):
def
forward
(
self
,
x
):
"""Forward function."""
x
=
self
.
patch_embed
(
x
[
'image'
])
_
,
_
,
Wh
,
Ww
=
x
.
shape
B
,
_
,
Wh
,
Ww
=
x
.
shape
if
self
.
ape
:
# interpolate the position embedding to the corresponding size
absolute_pos_embed
=
F
.
interpolate
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录