提交 e5be4354 编写于 作者: S still-wait

add fast_nms

上级 d43e6d9a
......@@ -30,8 +30,8 @@ __all__ = [
'GenerateProposals', 'MultiClassNMS', 'BBoxAssigner', 'MaskAssigner',
'RoIAlign', 'RoIPool', 'MultiBoxHead', 'SSDLiteMultiBoxHead',
'SSDOutputDecoder', 'RetinaTargetAssign', 'RetinaOutputDecoder', 'ConvNorm',
'DeformConvNorm', 'MultiClassSoftNMS', 'MatrixNMS', 'LibraBBoxAssigner',
'DeformConv'
'DeformConvNorm', 'MultiClassSoftNMS', 'MatrixNMS', 'FastNMS',
'MultiClassDiouNMS', 'LibraBBoxAssigner', 'DeformConv'
]
......@@ -537,6 +537,105 @@ class MatrixNMS(object):
self.background_label = background_label
@register
@serializable
class FastNMS(object):
def __init__(self, iou_threshold=0.5, top_k=200, second_threshold=False):
super(FastNMS, self).__init__()
self.iou_threshold = iou_threshold
self.top_k = top_k
self.second_threshold = second_threshold
def _intersect_tensor(box_a, box_b):
n = fluid.layers.shape(box_a)[0]
shape_a = fluid.layers.shape(box_a)[1]
shape_b = fluid.layers.shape(box_b)[1]
max_xy = fluid.layers.elementwise_min(
fluid.layers.expand(
fluid.layers.unsqueeze(box_a[:, :, 2:], 2), [1, 1, shape_b, 1]),
fluid.layers.expand(
fluid.layers.unsqueeze(box_b[:, :, 2:], 1), [1, shape_a, 1, 1]))
min_xy = fluid.layers.elementwise_max(
fluid.layers.expand(
fluid.layers.unsqueeze(box_a[:, :, :2], 2), [1, 1, shape_b, 1]),
fluid.layers.expand(
fluid.layers.unsqueeze(box_b[:, :, :2], 1), [1, shape_a, 1, 1]))
inter = fluid.layers.clip((max_xy - min_xy), min=0, max=1000)
return inter[:, :, :, 0] * inter[:, :, :, 1]
def _jaccard_tensor(box_a, box_b, iscrowd=False):
use_batch = True
shape_a = fluid.layers.shape(box_a)[1]
shape_b = fluid.layers.shape(box_b)[1]
inter = _intersect_tensor(box_a, box_b)
area_a = fluid.layers.expand(
fluid.layers.unsqueeze(((box_a[:, :, 2] - box_a[:, :, 0]) *
(box_a[:, :, 3] - box_a[:, :, 1])), 2),
[1, 1, shape_b])
area_b = fluid.layers.expand(
fluid.layers.unsqueeze(((box_b[:, :, 2] - box_b[:, :, 0]) *
(box_b[:, :, 3] - box_b[:, :, 1])), 1),
[1, shape_a, 1])
union = area_a + area_b - inter
out = inter / (area_a) if iscrowd else inter / (union)
return out if use_batch else fluid.layers.squeeze(out, [0])
def __call__(self, boxes, masks, scores):
scores, idx = fluid.layers.argsort(scores, axis=1, descending=True)
idx = idx[:, :top_k]
scores = scores[:, :top_k]
idx_shape = fluid.layers.shape(idx)
num_classes = idx_shape[0]
num_dets = idx_shape[1]
idx = fluid.layers.reshape(idx, [-1])
boxes = fluid.layers.reshape(
fluid.layers.gather(boxes, idx), (num_classes, num_dets, 4))
masks = fluid.layers.reshape(
fluid.layers.gather(masks, idx), (num_classes, num_dets, -1))
iou = _jaccard_tensor(boxes, boxes)
iou = paddle.tensor.triu(iou, 1)
iou_max = fluid.layers.reduce_max(iou, 1)
keep = (iou_max <= iou_threshold)
if second_threshold:
conf_thresh = 0.05
keep *= fluid.layers.cast(scores > conf_thresh, 'float32')
classes = fluid.layers.expand(
fluid.layers.unsqueeze(
fluid.layers.range(0, num_classes, 1, 'int32'), 1),
(1, num_dets))
out = fluid.layers.where(keep)
classes = fluid.layers.gather_nd(classes, out)
boxes = fluid.layers.gather_nd(boxes, out)
masks = fluid.layers.gather_nd(masks, out)
scores = fluid.layers.gather_nd(scores, out)
scores, idx = fluid.layers.argsort(scores, axis=0, descending=True)
max_num_detections = 100
idx = idx[:max_num_detections]
scores = scores[:max_num_detections]
classes = fluid.layers.gather(classes, idx)
boxes = fluid.layers.gather(boxes, idx)
masks = fluid.layers.gather(masks, idx)
return boxes, masks, classes, scores
@register
@serializable
class MultiClassSoftNMS(object):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册