Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e44f0538
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e44f0538
编写于
2月 28, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'wangyi/dataset' into feature/clean_mnist_v2
上级
792875e3
6bc82c8e
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
333 addition
and
41 deletion
+333
-41
python/paddle/v2/dataset/cifar.py
python/paddle/v2/dataset/cifar.py
+82
-0
python/paddle/v2/dataset/common.py
python/paddle/v2/dataset/common.py
+35
-0
python/paddle/v2/dataset/config.py
python/paddle/v2/dataset/config.py
+0
-8
python/paddle/v2/dataset/mnist.py
python/paddle/v2/dataset/mnist.py
+47
-33
python/paddle/v2/dataset/movielens.py
python/paddle/v2/dataset/movielens.py
+120
-0
python/paddle/v2/dataset/tests/common_test.py
python/paddle/v2/dataset/tests/common_test.py
+23
-0
python/paddle/v2/dataset/tests/mnist_test.py
python/paddle/v2/dataset/tests/mnist_test.py
+26
-0
未找到文件。
python/paddle/v2/dataset/cifar.py
0 → 100644
浏览文件 @
e44f0538
"""
CIFAR Dataset.
URL: https://www.cs.toronto.edu/~kriz/cifar.html
the default train_creator, test_creator used for CIFAR-10 dataset.
"""
import
cPickle
import
itertools
import
tarfile
import
numpy
from
common
import
download
__all__
=
[
'cifar_100_train_creator'
,
'cifar_100_test_creator'
,
'train_creator'
,
'test_creator'
]
CIFAR10_URL
=
'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
CIFAR10_MD5
=
'c58f30108f718f92721af3b95e74349a'
CIFAR100_URL
=
'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
CIFAR100_MD5
=
'eb9058c3a382ffc7106e4002c42a8d85'
def
__read_batch__
(
filename
,
sub_name
):
def
reader
():
def
__read_one_batch_impl__
(
batch
):
data
=
batch
[
'data'
]
labels
=
batch
.
get
(
'labels'
,
batch
.
get
(
'fine_labels'
,
None
))
assert
labels
is
not
None
for
sample
,
label
in
itertools
.
izip
(
data
,
labels
):
yield
(
sample
/
255.0
).
astype
(
numpy
.
float32
),
int
(
label
)
with
tarfile
.
open
(
filename
,
mode
=
'r'
)
as
f
:
names
=
(
each_item
.
name
for
each_item
in
f
if
sub_name
in
each_item
.
name
)
for
name
in
names
:
batch
=
cPickle
.
load
(
f
.
extractfile
(
name
))
for
item
in
__read_one_batch_impl__
(
batch
):
yield
item
return
reader
def
cifar_100_train_creator
():
fn
=
download
(
url
=
CIFAR100_URL
,
md5
=
CIFAR100_MD5
)
return
__read_batch__
(
fn
,
'train'
)
def
cifar_100_test_creator
():
fn
=
download
(
url
=
CIFAR100_URL
,
md5
=
CIFAR100_MD5
)
return
__read_batch__
(
fn
,
'test'
)
def
train_creator
():
"""
Default train reader creator. Use CIFAR-10 dataset.
"""
fn
=
download
(
url
=
CIFAR10_URL
,
md5
=
CIFAR10_MD5
)
return
__read_batch__
(
fn
,
'data_batch'
)
def
test_creator
():
"""
Default test reader creator. Use CIFAR-10 dataset.
"""
fn
=
download
(
url
=
CIFAR10_URL
,
md5
=
CIFAR10_MD5
)
return
__read_batch__
(
fn
,
'test_batch'
)
def
unittest
():
for
_
in
train_creator
()():
pass
for
_
in
test_creator
()():
pass
if
__name__
==
'__main__'
:
unittest
()
python/paddle/v2/dataset/common.py
0 → 100644
浏览文件 @
e44f0538
import
requests
import
hashlib
import
os
import
shutil
__all__
=
[
'DATA_HOME'
,
'download'
,
'md5file'
]
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
if
not
os
.
path
.
exists
(
DATA_HOME
):
os
.
makedirs
(
DATA_HOME
)
def
md5file
(
fname
):
hash_md5
=
hashlib
.
md5
()
f
=
open
(
fname
,
"rb"
)
for
chunk
in
iter
(
lambda
:
f
.
read
(
4096
),
b
""
):
hash_md5
.
update
(
chunk
)
f
.
close
()
return
hash_md5
.
hexdigest
()
def
download
(
url
,
module_name
,
md5sum
):
dirname
=
os
.
path
.
join
(
DATA_HOME
,
module_name
)
if
not
os
.
path
.
exists
(
dirname
):
os
.
makedirs
(
dirname
)
filename
=
os
.
path
.
join
(
dirname
,
url
.
split
(
'/'
)[
-
1
])
if
not
(
os
.
path
.
exists
(
filename
)
and
md5file
(
filename
)
==
md5sum
):
# If file doesn't exist or MD5 doesn't match, then download.
r
=
requests
.
get
(
url
,
stream
=
True
)
with
open
(
filename
,
'w'
)
as
f
:
shutil
.
copyfileobj
(
r
.
raw
,
f
)
return
filename
python/paddle/v2/dataset/config.py
已删除
100644 → 0
浏览文件 @
792875e3
import
os
__all__
=
[
'DATA_HOME'
]
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle_data_set'
)
if
not
os
.
path
.
exists
(
DATA_HOME
):
os
.
makedirs
(
DATA_HOME
)
python/paddle/v2/dataset/mnist.py
浏览文件 @
e44f0538
import
sklearn.datasets.mldata
import
s
klearn.model_selection
import
paddle.v2.dataset.common
import
s
ubprocess
import
numpy
from
config
import
DATA_HOME
__all__
=
[
'train
_creator'
,
'test_creator
'
]
__all__
=
[
'train
'
,
'test
'
]
URL_PREFIX
=
'http://yann.lecun.com/exdb/mnist/'
TEST_IMAGE_URL
=
URL_PREFIX
+
't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5
=
'25e3cc63507ef6e98d5dc541e8672bb6'
TEST_LABEL_URL
=
URL_PREFIX
+
't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5
=
'4e9511fe019b2189026bd0421ba7b688'
TRAIN_IMAGE_URL
=
URL_PREFIX
+
'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5
=
'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL
=
URL_PREFIX
+
'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5
=
'd53e105ee54ea40749a09fcbcd1e9432'
def
__mnist_reader_creator__
(
data
,
target
):
def
reader
():
n_samples
=
data
.
shape
[
0
]
for
i
in
xrange
(
n_samples
):
yield
(
data
[
i
]
/
255.0
).
astype
(
numpy
.
float32
),
int
(
target
[
i
])
return
reader
def
reader_creator
(
image_filename
,
label_filename
,
buffer_size
):
def
reader
():
# According to http://stackoverflow.com/a/38061619/724872, we
# cannot use standard package gzip here.
m
=
subprocess
.
Popen
([
"zcat"
,
image_filename
],
stdout
=
subprocess
.
PIPE
)
m
.
stdout
.
read
(
16
)
# skip some magic bytes
l
=
subprocess
.
Popen
([
"zcat"
,
label_filename
],
stdout
=
subprocess
.
PIPE
)
l
.
stdout
.
read
(
8
)
# skip some magic bytes
TEST_SIZE
=
10000
X_train
=
None
X_test
=
None
y_train
=
None
y_test
=
None
while
True
:
labels
=
numpy
.
fromfile
(
l
.
stdout
,
'ubyte'
,
count
=
buffer_size
).
astype
(
"int"
)
if
labels
.
size
!=
buffer_size
:
break
# numpy.fromfile returns empty slice after EOF.
def
__initialize_dataset__
():
global
X_train
,
X_test
,
y_train
,
y_test
if
X_train
is
not
None
:
return
data
=
sklearn
.
datasets
.
mldata
.
fetch_mldata
(
"MNIST original"
,
data_home
=
DATA_HOME
)
X_train
,
X_test
,
y_train
,
y_test
=
sklearn
.
model_selection
.
train_test_split
(
data
.
data
,
data
.
target
,
test_size
=
TEST_SIZE
,
random_state
=
0
)
images
=
numpy
.
fromfile
(
m
.
stdout
,
'ubyte'
,
count
=
buffer_size
*
28
*
28
).
reshape
(
(
buffer_size
,
28
*
28
)).
astype
(
'float32'
)
images
=
images
/
255.0
*
2.0
-
1.0
def
train_creator
():
__initialize_dataset__
()
return
__mnist_reader_creator__
(
X_train
,
y_train
)
for
i
in
xrange
(
buffer_size
):
yield
images
[
i
,
:],
labels
[
i
]
m
.
terminate
()
l
.
terminate
()
def
test_creator
():
__initialize_dataset__
()
return
__mnist_reader_creator__
(
X_test
,
y_test
)
return
reader
()
def
unittest
():
assert
len
(
list
(
test_creator
()()))
==
TEST_SIZE
def
train
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
TRAIN_IMAGE_URL
,
'mnist'
,
TRAIN_IMAGE_MD5
),
paddle
.
v2
.
dataset
.
common
.
download
(
TRAIN_LABEL_URL
,
'mnist'
,
TRAIN_LABEL_MD5
),
100
)
if
__name__
==
'__main__'
:
unittest
()
def
test
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
TEST_IMAGE_URL
,
'mnist'
,
TEST_IMAGE_MD5
),
paddle
.
v2
.
dataset
.
common
.
download
(
TEST_LABEL_URL
,
'mnist'
,
TEST_LABEL_MD5
),
100
)
python/paddle/v2/dataset/movielens.py
0 → 100644
浏览文件 @
e44f0538
import
zipfile
from
common
import
download
import
re
import
random
import
functools
__all__
=
[
'train_creator'
,
'test_creator'
]
class
MovieInfo
(
object
):
def
__init__
(
self
,
index
,
categories
,
title
):
self
.
index
=
int
(
index
)
self
.
categories
=
categories
self
.
title
=
title
def
value
(
self
):
return
[
self
.
index
,
[
CATEGORIES_DICT
[
c
]
for
c
in
self
.
categories
],
[
MOVIE_TITLE_DICT
[
w
.
lower
()]
for
w
in
self
.
title
.
split
()]
]
class
UserInfo
(
object
):
def
__init__
(
self
,
index
,
gender
,
age
,
job_id
):
self
.
index
=
int
(
index
)
self
.
is_male
=
gender
==
'M'
self
.
age
=
[
1
,
18
,
25
,
35
,
45
,
50
,
56
].
index
(
int
(
age
))
self
.
job_id
=
int
(
job_id
)
def
value
(
self
):
return
[
self
.
index
,
0
if
self
.
is_male
else
1
,
self
.
age
,
self
.
job_id
]
MOVIE_INFO
=
None
MOVIE_TITLE_DICT
=
None
CATEGORIES_DICT
=
None
USER_INFO
=
None
def
__initialize_meta_info__
():
fn
=
download
(
url
=
'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
,
md5
=
'c4d9eecfca2ab87c1945afe126590906'
)
global
MOVIE_INFO
if
MOVIE_INFO
is
None
:
pattern
=
re
.
compile
(
r
'^(.*)\((\d+)\)$'
)
with
zipfile
.
ZipFile
(
file
=
fn
)
as
package
:
for
info
in
package
.
infolist
():
assert
isinstance
(
info
,
zipfile
.
ZipInfo
)
MOVIE_INFO
=
dict
()
title_word_set
=
set
()
categories_set
=
set
()
with
package
.
open
(
'ml-1m/movies.dat'
)
as
movie_file
:
for
i
,
line
in
enumerate
(
movie_file
):
movie_id
,
title
,
categories
=
line
.
strip
().
split
(
'::'
)
categories
=
categories
.
split
(
'|'
)
for
c
in
categories
:
categories_set
.
add
(
c
)
title
=
pattern
.
match
(
title
).
group
(
1
)
MOVIE_INFO
[
int
(
movie_id
)]
=
MovieInfo
(
index
=
movie_id
,
categories
=
categories
,
title
=
title
)
for
w
in
title
.
split
():
title_word_set
.
add
(
w
.
lower
())
global
MOVIE_TITLE_DICT
MOVIE_TITLE_DICT
=
dict
()
for
i
,
w
in
enumerate
(
title_word_set
):
MOVIE_TITLE_DICT
[
w
]
=
i
global
CATEGORIES_DICT
CATEGORIES_DICT
=
dict
()
for
i
,
c
in
enumerate
(
categories_set
):
CATEGORIES_DICT
[
c
]
=
i
global
USER_INFO
USER_INFO
=
dict
()
with
package
.
open
(
'ml-1m/users.dat'
)
as
user_file
:
for
line
in
user_file
:
uid
,
gender
,
age
,
job
,
_
=
line
.
strip
().
split
(
"::"
)
USER_INFO
[
int
(
uid
)]
=
UserInfo
(
index
=
uid
,
gender
=
gender
,
age
=
age
,
job_id
=
job
)
return
fn
def
__reader__
(
rand_seed
=
0
,
test_ratio
=
0.1
,
is_test
=
False
):
fn
=
__initialize_meta_info__
()
rand
=
random
.
Random
(
x
=
rand_seed
)
with
zipfile
.
ZipFile
(
file
=
fn
)
as
package
:
with
package
.
open
(
'ml-1m/ratings.dat'
)
as
rating
:
for
line
in
rating
:
if
(
rand
.
random
()
<
test_ratio
)
==
is_test
:
uid
,
mov_id
,
rating
,
_
=
line
.
strip
().
split
(
"::"
)
uid
=
int
(
uid
)
mov_id
=
int
(
mov_id
)
rating
=
float
(
rating
)
*
2
-
5.0
mov
=
MOVIE_INFO
[
mov_id
]
usr
=
USER_INFO
[
uid
]
yield
usr
.
value
()
+
mov
.
value
()
+
[[
rating
]]
def
__reader_creator__
(
**
kwargs
):
return
lambda
:
__reader__
(
**
kwargs
)
train_creator
=
functools
.
partial
(
__reader_creator__
,
is_test
=
False
)
test_creator
=
functools
.
partial
(
__reader_creator__
,
is_test
=
True
)
def
unittest
():
for
train_count
,
_
in
enumerate
(
train_creator
()()):
pass
for
test_count
,
_
in
enumerate
(
test_creator
()()):
pass
print
train_count
,
test_count
if
__name__
==
'__main__'
:
unittest
()
python/paddle/v2/dataset/tests/common_test.py
0 → 100644
浏览文件 @
e44f0538
import
paddle.v2.dataset.common
import
unittest
import
tempfile
class
TestCommon
(
unittest
.
TestCase
):
def
test_md5file
(
self
):
_
,
temp_path
=
tempfile
.
mkstemp
()
with
open
(
temp_path
,
'w'
)
as
f
:
f
.
write
(
"Hello
\n
"
)
self
.
assertEqual
(
'09f7e02f1290be211da707a266f153b3'
,
paddle
.
v2
.
dataset
.
common
.
md5file
(
temp_path
))
def
test_download
(
self
):
yi_avatar
=
'https://avatars0.githubusercontent.com/u/1548775?v=3&s=460'
self
.
assertEqual
(
paddle
.
v2
.
dataset
.
common
.
DATA_HOME
+
'/test/1548775?v=3&s=460'
,
paddle
.
v2
.
dataset
.
common
.
download
(
yi_avatar
,
'test'
,
'f75287202d6622414c706c36c16f8e0d'
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/dataset/tests/mnist_test.py
0 → 100644
浏览文件 @
e44f0538
import
paddle.v2.dataset.mnist
import
unittest
class
TestMNIST
(
unittest
.
TestCase
):
def
check_reader
(
self
,
reader
):
sum
=
0
for
l
in
reader
:
self
.
assertEqual
(
l
[
0
].
size
,
784
)
self
.
assertEqual
(
l
[
1
].
size
,
1
)
self
.
assertLess
(
l
[
1
],
10
)
self
.
assertGreaterEqual
(
l
[
1
],
0
)
sum
+=
1
return
sum
def
test_train
(
self
):
self
.
assertEqual
(
self
.
check_reader
(
paddle
.
v2
.
dataset
.
mnist
.
train
()),
60000
)
def
test_test
(
self
):
self
.
assertEqual
(
self
.
check_reader
(
paddle
.
v2
.
dataset
.
mnist
.
test
()),
10000
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录