Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e3c7348f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
接近 2 年 前同步成功
通知
707
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
“64b78b1656bd023e916447e7ea6c08de3d5c1f88”上不存在“doc/fluid/CMakeLists.txt”
提交
e3c7348f
编写于
9月 05, 2018
作者:
D
Dang Qingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update quantize_transpiler
上级
1d0353f1
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
805 addition
and
0 deletion
+805
-0
python/paddle/fluid/tests/transpiler/CMakeLists.txt
python/paddle/fluid/tests/transpiler/CMakeLists.txt
+6
-0
python/paddle/fluid/tests/transpiler/test_quantize_transpiler.py
...paddle/fluid/tests/transpiler/test_quantize_transpiler.py
+254
-0
python/paddle/fluid/transpiler/quantize_transpiler.py
python/paddle/fluid/transpiler/quantize_transpiler.py
+545
-0
未找到文件。
python/paddle/fluid/tests/transpiler/CMakeLists.txt
0 → 100644
浏览文件 @
e3c7348f
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/fluid/tests/transpiler/test_quantize_transpiler.py
0 → 100644
浏览文件 @
e3c7348f
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
numpy
as
np
import
unittest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.transpiler.quantize_transpiler
import
_original_var_name
def
linear_fc
(
num
):
data
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
data
for
_
in
xrange
(
num
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
128
,
act
=
'relu'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
hidden
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
residual_block
(
num
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
bias_attr
=
False
):
tmp
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
bias_attr
)
return
fluid
.
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
)
data
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
data
for
_
in
xrange
(
num
):
conv
=
conv_bn_layer
(
hidden
,
16
,
3
,
1
,
1
,
act
=
None
,
bias_attr
=
True
)
short
=
conv_bn_layer
(
hidden
,
16
,
1
,
1
,
0
,
act
=
None
)
hidden
=
fluid
.
layers
.
elementwise_add
(
x
=
conv
,
y
=
short
,
act
=
'relu'
)
fc
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
fc
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
conv_net
(
img
,
label
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
img
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_1
=
fluid
.
layers
.
batch_norm
(
conv_pool_1
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
class
TestQuantizeTranspiler
(
unittest
.
TestCase
):
def
setUp
(
self
):
# since quant_op and dequant_op is not ready, use cos and sin for test
self
.
weight_quant_op_type
=
'fake_quantize_abs_max'
self
.
dequant_op_type
=
'fake_dequantize_max_abs'
self
.
quantizable_op_and_inputs
=
{
'conv2d'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d'
:
[
'Input'
,
'Filter'
],
'mul'
:
[
'X'
,
'Y'
]
}
self
.
quantizable_op_grad_and_inputs
=
{
'conv2d_grad'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d_grad'
:
[
'Input'
,
'Filter'
],
'mul_grad'
:
[
'X'
,
'Y'
]
}
def
check_program
(
self
,
program
):
quantized_ops
=
{}
persistable_vars
=
[
v
.
name
for
v
in
filter
(
lambda
var
:
var
.
persistable
,
program
.
list_vars
())
]
for
block
in
program
.
blocks
:
for
idx
,
op
in
enumerate
(
block
.
ops
):
# check forward
if
op
.
type
in
self
.
quantizable_op_and_inputs
:
for
i
,
arg_name
in
enumerate
(
op
.
input_arg_names
):
quant_op_type
=
self
.
weight_quant_op_type
if
\
_original_var_name
(
arg_name
)
\
in
persistable_vars
else
self
.
act_quant_op_type
self
.
assertTrue
(
arg_name
.
endswith
(
'.quantized.dequantized'
))
if
arg_name
not
in
quantized_ops
:
self
.
assertEqual
(
block
.
ops
[
idx
-
2
*
i
-
1
].
type
,
self
.
dequant_op_type
)
self
.
assertEqual
(
block
.
ops
[
idx
-
2
*
i
-
2
].
type
,
quant_op_type
)
quantized_ops
[
arg_name
]
=
block
.
ops
[
idx
-
2
*
i
-
2
]
else
:
op_idx
=
block
.
ops
.
index
(
quantized_ops
[
arg_name
])
self
.
assertLess
(
op_idx
,
idx
)
# check backward
if
op
.
type
in
self
.
quantizable_op_grad_and_inputs
:
for
pname
in
self
.
quantizable_op_grad_and_inputs
[
op
.
type
]:
arg_name
=
op
.
input
(
pname
)[
0
]
self
.
assertTrue
(
arg_name
.
endswith
(
'.quantized.dequantized'
))
self
.
assertTrue
(
arg_name
in
quantized_ops
)
def
linear_fc_quant
(
self
,
quant_type
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
linear_fc
(
3
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
t
=
fluid
.
QuantizeTranspiler
(
activation_quantize_type
=
quant_type
)
t
.
training_transpile
(
main
)
self
.
check_program
(
main
)
def
test_linear_fc_quant_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
self
.
linear_fc_quant
(
'abs_max'
)
def
test_linear_fc_quant_range_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_range_abs_max'
self
.
linear_fc_quant
(
'range_abs_max'
)
def
residual_block_quant
(
self
,
quant_type
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
residual_block
(
2
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
t
=
fluid
.
QuantizeTranspiler
(
activation_quantize_type
=
quant_type
)
t
.
training_transpile
(
main
)
self
.
check_program
(
main
)
def
test_residual_block_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
self
.
residual_block_quant
(
'abs_max'
)
def
test_residual_block_range_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_range_abs_max'
self
.
residual_block_quant
(
'range_abs_max'
)
def
freeze_program
(
self
,
use_cuda
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
quant_transpiler
=
fluid
.
QuantizeTranspiler
()
with
fluid
.
program_guard
(
main
,
startup
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
loss
=
conv_net
(
img
,
label
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
quant_transpiler
.
training_transpile
(
main
)
test_program
=
main
.
clone
()
with
fluid
.
program_guard
(
test_program
):
test_program
=
fluid
.
io
.
get_inference_program
(
loss
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
iter
=
5
batch_size
=
8
class_num
=
10
exe
.
run
(
startup
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
for
_
in
range
(
iter
):
data
=
train_reader
().
next
()
loss_v
=
exe
.
run
(
program
=
main
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
test_data
=
test_reader
().
next
()
f_var
=
fluid
.
framework
.
get_var
(
'conv2d_1.tmp_0'
,
test_program
)
w_var
=
fluid
.
framework
.
get_var
(
'conv2d_1.w_0.quantized'
,
test_program
)
# Testing during training
test_loss1
,
f_v1
,
w_quant
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
loss
,
f_var
,
w_var
])
# Freeze program for inference, but the weight of fc/conv is still float type.
quant_transpiler
.
freeze_program
(
test_program
,
place
)
fv2
=
fluid
.
framework
.
get_var
(
'conv2d_1.tmp_0.dequantized'
,
test_program
)
test_loss2
,
f_v2
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
loss
,
fv2
])
self
.
assertAlmostEqual
(
test_loss1
,
test_loss2
,
delta
=
1e-5
)
self
.
assertAlmostEqual
(
f_v1
.
all
(),
f_v2
.
all
(),
delta
=
1e-5
)
w_freeze
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'conv2d_1.w_0'
)
.
get_tensor
())
self
.
assertEqual
(
np
.
sum
(
w_freeze
),
np
.
sum
(
w_quant
))
# Convert parameter to 8-bit.
quant_transpiler
.
convert_to_int8
(
test_program
,
place
)
# Save the 8-bit parameter and model file.
fluid
.
io
.
save_inference_model
(
'model_8bit'
,
[
'image'
,
'label'
],
[
loss
],
exe
,
test_program
)
# Test whether the 8-bit parameter and model file can be loaded successfully.
[
infer
,
feed
,
fetch
]
=
fluid
.
io
.
load_inference_model
(
'model_8bit'
,
exe
)
# Check the loaded 8-bit weight.
w_8bit
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'conv2d_1.w_0.int8'
)
.
get_tensor
())
self
.
assertEqual
(
w_8bit
.
dtype
,
np
.
int8
)
self
.
assertEqual
(
np
.
sum
(
w_8bit
),
np
.
sum
(
w_freeze
))
def
test_freeze_program_cuda
(
self
):
self
.
freeze_program
(
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/transpiler/quantize_transpiler.py
0 → 100644
浏览文件 @
e3c7348f
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录