未验证 提交 e3603809 编写于 作者: Y Yulv-git 提交者: GitHub

Update KeyPoint Detection Readme for some typos and links. (#6579)

* Update README_en.md

* Update README.md

* Update some links for Keypoint Model.

* Update some links for Keypoint Model.

* Update README.md

* Update README_en.md
上级 c2a1891d
...@@ -21,23 +21,24 @@ ...@@ -21,23 +21,24 @@
- [模型部署](#模型部署) - [模型部署](#模型部署)
- [Top-Down模型联合部署](#top-down模型联合部署) - [Top-Down模型联合部署](#top-down模型联合部署)
- [Bottom-Up模型独立部署](#bottom-up模型独立部署) - [Bottom-Up模型独立部署](#bottom-up模型独立部署)
- [与多目标跟踪联合部署](#与多目标跟踪模型fairmot联合部署) - [与多目标跟踪联合部署](#与多目标跟踪模型FairMOT联合部署预测)
- [完整部署教程及Demo](#完整部署教程及Demo)
- [自定义数据训练](#自定义数据训练) - [自定义数据训练](#自定义数据训练)
- [BenchMark](#benchmark) - [BenchMark](#benchmark)
## 简介 ## 简介
PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包含Top-Down、Bottom-Up两套方案,Top-Down先检测主体,再检测局部关键点,优点是精度较高,缺点是速度会随着检测对象的个数增加,Bottom-Up先检测关键点再组合到对应的部位上,优点是速度快,与检测对象个数无关,缺点是精度较低。 PaddleDetection 中的关键点检测部分紧跟最先进的算法,包括 Top-Down 和 Bottom-Up 两种方法,可以满足用户的不同需求。Top-Down 先检测对象,再检测特定关键点。Top-Down 模型的准确率会更高,但速度会随着对象数量的增加而变慢。不同的是,Bottom-Up 首先检测点,然后对这些点进行分组或连接以形成多个人体姿势实例。Bottom-Up 的速度是固定的,不会随着物体数量的增加而变慢,但精度会更低。
同时,PaddleDetection提供针对移动端设备优化的自研实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md),以满足用户的不同需求 同时,PaddleDetection 提供针对移动端设备优化的自研实时关键点检测模型 [PP-TinyPose](./tiny_pose/README.md)
## 模型推荐 ## 模型推荐
### 移动端模型推荐 ### 移动端模型推荐
| 检测模型 | 关键点模型 | 输入尺寸 | COCO数据集精度 | 平均推理耗时 (FP16) | 参数量 (M) | Flops (G) | 模型权重 | Paddle-Lite部署模型(FP16) | | 检测模型 | 关键点模型 | 输入尺寸 | COCO数据集精度 | 平均推理耗时 (FP16) | 参数量 (M) | Flops (G) | 模型权重 | Paddle-Lite部署模型(FP16) |
| :----------------------------------------------------------- | :------------------------------------ | :------------------------------: | :-----------------------------: | :------------------------------------: | --------------------------- | :-------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | | :----------------------------------------------------------- | :------------------------------------ | :------------------------------: | :-----------------------------: | :------------------------------------: | --------------------------- | :-------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tinypose_128x96.yml) | 检测:192x192<br>关键点:128x96 | 检测mAP:29.0<br>关键点AP:58.1 | 检测耗时:2.37ms<br>关键点耗时:3.27ms | 检测:1.18<br/>关键点:1.36 | 检测:0.35<br/>关键点:0.08 | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) | | [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tiny_pose/tinypose_128x96.yml) | 检测:192x192<br>关键点:128x96 | 检测mAP:29.0<br>关键点AP:58.1 | 检测耗时:2.37ms<br>关键点耗时:3.27ms | 检测:1.18<br/>关键点:1.36 | 检测:0.35<br/>关键点:0.08 | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tinypose_256x192.yml) | 检测:320x320<br>关键点:256x192 | 检测mAP:38.5<br>关键点AP:68.8 | 检测耗时:6.30ms<br>关键点耗时:8.33ms | 检测:1.18<br/>关键点:1.36 | 检测:0.97<br/>关键点:0.32 | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) | | [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tiny_pose/tinypose_256x192.yml) | 检测:320x320<br>关键点:256x192 | 检测mAP:38.5<br>关键点AP:68.8 | 检测耗时:6.30ms<br>关键点耗时:8.33ms | 检测:1.18<br/>关键点:1.36 | 检测:0.97<br/>关键点:0.32 | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
*详细关于PP-TinyPose的使用请参考[文档]((./tiny_pose/README.md))。 *详细关于PP-TinyPose的使用请参考[文档]((./tiny_pose/README.md))。
...@@ -176,7 +177,7 @@ python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inferenc ...@@ -176,7 +177,7 @@ python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inferenc
**注意:** **注意:**
跟踪模型导出教程请参考[文档](../mot/README.md) 跟踪模型导出教程请参考[文档](../mot/README.md)
### 4、完整部署教程及Demo ### 完整部署教程及Demo
​ 我们提供了PaddleInference(服务器端)、PaddleLite(移动端)、第三方部署(MNN、OpenVino)支持。无需依赖训练代码,deploy文件夹下相应文件夹提供独立完整部署代码。 详见 [部署文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/README.md)介绍。 ​ 我们提供了PaddleInference(服务器端)、PaddleLite(移动端)、第三方部署(MNN、OpenVino)支持。无需依赖训练代码,deploy文件夹下相应文件夹提供独立完整部署代码。 详见 [部署文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/README.md)介绍。
......
...@@ -22,13 +22,9 @@ ...@@ -22,13 +22,9 @@
## Introduction ## Introduction
The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users. The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users. Top-Down detects the object first and then detects the specific keypoint. Top-Down models will be more accurate, but slower as the number of objects increases. Differently, Bottom-Up detects the point first and then group or connect those points to form several instances of human pose. The speed of Bottom-Up is fixed, it won't slow down as the number of objects increases, but it will be less accurate.
Top-Down detects the object first and then detect the specific keypoint. The accuracy of Top-Down models will be higher, but the time required will increase by the number of objects. At the same time, PaddleDetection provides a self-developed real-time keypoint detection model [PP-TinyPose](./tiny_pose/README_en.md) optimized for mobile devices.
Differently, Bottom-Up detects the point first and then group or connect those points to form several instances of human pose. The speed of Bottom-Up is fixed and will not increase by the number of objects, but the accuracy will be lower.
At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README.md) specially for mobile devices.
<div align="center"> <div align="center">
<img src="./football_keypoint.gif" width='800'/> <img src="./football_keypoint.gif" width='800'/>
...@@ -40,8 +36,8 @@ At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README.md) ...@@ -40,8 +36,8 @@ At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README.md)
| Detection Model | Keypoint Model | Input Size | Accuracy of COCO | Average Inference Time (FP16) | Params (M) | Flops (G) | Model Weight | Paddle-Lite Inference Model(FP16) | | Detection Model | Keypoint Model | Input Size | Accuracy of COCO | Average Inference Time (FP16) | Params (M) | Flops (G) | Model Weight | Paddle-Lite Inference Model(FP16) |
| :----------------------------------------------------------- | :------------------------------------ | :-------------------------------------: | :--------------------------------------: | :-----------------------------------: | :--------------------------------: | :--------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | | :----------------------------------------------------------- | :------------------------------------ | :-------------------------------------: | :--------------------------------------: | :-----------------------------------: | :--------------------------------: | :--------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| [PicoDet-S-Pedestrian](../../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tinypose_128x96.yml) | Detection:192x192<br>Keypoint:128x96 | Detection mAP:29.0<br>Keypoint AP:58.1 | Detection:2.37ms<br>Keypoint:3.27ms | Detection:1.18<br/>Keypoint:1.36 | Detection:0.35<br/>Keypoint:0.08 | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) | | [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tiny_pose/tinypose_128x96.yml) | Detection:192x192<br>Keypoint:128x96 | Detection mAP:29.0<br>Keypoint AP:58.1 | Detection:2.37ms<br>Keypoint:3.27ms | Detection:1.18<br/>Keypoint:1.36 | Detection:0.35<br/>Keypoint:0.08 | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| [PicoDet-S-Pedestrian](../../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tinypose_256x192.yml) | Detection:320x320<br>Keypoint:256x192 | Detection mAP:38.5<br>Keypoint AP:68.8 | Detection:6.30ms<br>Keypoint:8.33ms | Detection:1.18<br/>Keypoint:1.36 | Detection:0.97<br/>Keypoint:0.32 | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) | | [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tiny_pose/tinypose_256x192.yml) | Detection:320x320<br>Keypoint:256x192 | Detection mAP:38.5<br>Keypoint AP:68.8 | Detection:6.30ms<br>Keypoint:8.33ms | Detection:1.18<br/>Keypoint:1.36 | Detection:0.97<br/>Keypoint:0.32 | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
*Specific documents of PP-TinyPose, please refer to [Document]((./tiny_pose/README.md))。 *Specific documents of PP-TinyPose, please refer to [Document]((./tiny_pose/README.md))。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册