From e36038093a47f4d44b327f8c73c378c66a134862 Mon Sep 17 00:00:00 2001
From: Yulv-git <34329208+Yulv-git@users.noreply.github.com>
Date: Thu, 4 Aug 2022 11:25:58 +0800
Subject: [PATCH] Update KeyPoint Detection Readme for some typos and links.
(#6579)
* Update README_en.md
* Update README.md
* Update some links for Keypoint Model.
* Update some links for Keypoint Model.
* Update README.md
* Update README_en.md
---
configs/keypoint/README.md | 13 +++++++------
configs/keypoint/README_en.md | 12 ++++--------
2 files changed, 11 insertions(+), 14 deletions(-)
diff --git a/configs/keypoint/README.md b/configs/keypoint/README.md
index f469fa852..64011d6d8 100644
--- a/configs/keypoint/README.md
+++ b/configs/keypoint/README.md
@@ -21,23 +21,24 @@
- [模型部署](#模型部署)
- [Top-Down模型联合部署](#top-down模型联合部署)
- [Bottom-Up模型独立部署](#bottom-up模型独立部署)
- - [与多目标跟踪联合部署](#与多目标跟踪模型fairmot联合部署)
+ - [与多目标跟踪联合部署](#与多目标跟踪模型FairMOT联合部署预测)
+ - [完整部署教程及Demo](#完整部署教程及Demo)
- [自定义数据训练](#自定义数据训练)
- [BenchMark](#benchmark)
## 简介
-PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包含Top-Down、Bottom-Up两套方案,Top-Down先检测主体,再检测局部关键点,优点是精度较高,缺点是速度会随着检测对象的个数增加,Bottom-Up先检测关键点再组合到对应的部位上,优点是速度快,与检测对象个数无关,缺点是精度较低。
+PaddleDetection 中的关键点检测部分紧跟最先进的算法,包括 Top-Down 和 Bottom-Up 两种方法,可以满足用户的不同需求。Top-Down 先检测对象,再检测特定关键点。Top-Down 模型的准确率会更高,但速度会随着对象数量的增加而变慢。不同的是,Bottom-Up 首先检测点,然后对这些点进行分组或连接以形成多个人体姿势实例。Bottom-Up 的速度是固定的,不会随着物体数量的增加而变慢,但精度会更低。
-同时,PaddleDetection提供针对移动端设备优化的自研实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md),以满足用户的不同需求。
+同时,PaddleDetection 提供针对移动端设备优化的自研实时关键点检测模型 [PP-TinyPose](./tiny_pose/README.md)。
## 模型推荐
### 移动端模型推荐
| 检测模型 | 关键点模型 | 输入尺寸 | COCO数据集精度 | 平均推理耗时 (FP16) | 参数量 (M) | Flops (G) | 模型权重 | Paddle-Lite部署模型(FP16) |
| :----------------------------------------------------------- | :------------------------------------ | :------------------------------: | :-----------------------------: | :------------------------------------: | --------------------------- | :-------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
-| [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tinypose_128x96.yml) | 检测:192x192
关键点:128x96 | 检测mAP:29.0
关键点AP:58.1 | 检测耗时:2.37ms
关键点耗时:3.27ms | 检测:1.18
关键点:1.36 | 检测:0.35
关键点:0.08 | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)
[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)
[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
-| [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tinypose_256x192.yml) | 检测:320x320
关键点:256x192 | 检测mAP:38.5
关键点AP:68.8 | 检测耗时:6.30ms
关键点耗时:8.33ms | 检测:1.18
关键点:1.36 | 检测:0.97
关键点:0.32 | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)
[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)
[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
+| [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tiny_pose/tinypose_128x96.yml) | 检测:192x192
关键点:128x96 | 检测mAP:29.0
关键点AP:58.1 | 检测耗时:2.37ms
关键点耗时:3.27ms | 检测:1.18
关键点:1.36 | 检测:0.35
关键点:0.08 | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)
[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)
[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
+| [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tiny_pose/tinypose_256x192.yml) | 检测:320x320
关键点:256x192 | 检测mAP:38.5
关键点AP:68.8 | 检测耗时:6.30ms
关键点耗时:8.33ms | 检测:1.18
关键点:1.36 | 检测:0.97
关键点:0.32 | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)
[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)
[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
*详细关于PP-TinyPose的使用请参考[文档]((./tiny_pose/README.md))。
@@ -176,7 +177,7 @@ python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inferenc
**注意:**
跟踪模型导出教程请参考[文档](../mot/README.md)。
-### 4、完整部署教程及Demo
+### 完整部署教程及Demo
我们提供了PaddleInference(服务器端)、PaddleLite(移动端)、第三方部署(MNN、OpenVino)支持。无需依赖训练代码,deploy文件夹下相应文件夹提供独立完整部署代码。 详见 [部署文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/README.md)介绍。
diff --git a/configs/keypoint/README_en.md b/configs/keypoint/README_en.md
index b42b62f64..2d3cd4c47 100644
--- a/configs/keypoint/README_en.md
+++ b/configs/keypoint/README_en.md
@@ -22,13 +22,9 @@
## Introduction
-The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users.
+The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users. Top-Down detects the object first and then detects the specific keypoint. Top-Down models will be more accurate, but slower as the number of objects increases. Differently, Bottom-Up detects the point first and then group or connect those points to form several instances of human pose. The speed of Bottom-Up is fixed, it won't slow down as the number of objects increases, but it will be less accurate.
-Top-Down detects the object first and then detect the specific keypoint. The accuracy of Top-Down models will be higher, but the time required will increase by the number of objects.
-
-Differently, Bottom-Up detects the point first and then group or connect those points to form several instances of human pose. The speed of Bottom-Up is fixed and will not increase by the number of objects, but the accuracy will be lower.
-
-At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README.md) specially for mobile devices.
+At the same time, PaddleDetection provides a self-developed real-time keypoint detection model [PP-TinyPose](./tiny_pose/README_en.md) optimized for mobile devices.