未验证 提交 e2da3a5b 编写于 作者: C chengduo 提交者: GitHub

Revert "Add Event for TensorCopy" (#16022)

* Revert "Add Event for TensorCopy (#15953)"

This reverts commit 7235fd66.
test=develop

* fix CI
test=develop
上级 cae6614c
......@@ -38,10 +38,10 @@ if(WITH_GPU)
nv_library(tensor SRCS tensor.cc .tensor_util.cu DEPS place memory data_type device_context)
add_dependencies(tensor tensor_util)
else()
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type device_context profiler)
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type device_context )
endif(WIN32)
else()
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type device_context profiler)
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type device_context )
endif()
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
......
......@@ -18,7 +18,6 @@
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace framework {
......@@ -138,19 +137,16 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
#ifdef PADDLE_WITH_CUDA
else if (platform::is_gpu_place(src_place) && // NOLINT
platform::is_cpu_place(dst_place)) {
platform::RecordEvent record_event("TensorCopy:GPU->CPU");
auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
auto dst_cpu_place = boost::get<platform::CPUPlace>(dst_place);
memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
} else if (platform::is_cpu_place(src_place) &&
platform::is_gpu_place(dst_place)) {
platform::RecordEvent record_event("TensorCopy:CPU->GPU");
auto src_cpu_place = boost::get<platform::CPUPlace>(src_place);
auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
} else if (platform::is_gpu_place(src_place) &&
platform::is_gpu_place(dst_place)) {
platform::RecordEvent record_event("TensorCopy:GPU->GPU");
if (src_ptr == dst_ptr && platform::is_same_place(src_place, dst_place)) {
VLOG(3) << "Skip copy the same data from " << src_place << " to "
<< dst_place;
......@@ -161,7 +157,6 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
} else if (platform::is_cuda_pinned_place(src_place) &&
platform::is_gpu_place(dst_place)) {
platform::RecordEvent record_event("TensorCopy:CUDAPinned->GPU");
auto src_pinned_place = boost::get<platform::CUDAPinnedPlace>(src_place);
auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
......
add_subdirectory(detail)
add_subdirectory(allocation)
cc_library(malloc SRCS malloc.cc DEPS place enforce allocator_facade profiler)
cc_library(malloc SRCS malloc.cc DEPS place enforce allocator_facade)
cc_library(memcpy SRCS memcpy.cc DEPS place)
cc_library(memory
......
......@@ -15,7 +15,6 @@ limitations under the License. */
#include "paddle/fluid/memory/memcpy.h"
#include <cstring> // for memcpy
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace memory {
......@@ -30,23 +29,14 @@ void Copy<platform::CPUPlace, platform::CPUPlace>(platform::CPUPlace, void* dst,
#ifdef PADDLE_WITH_CUDA
static constexpr size_t kMaxGpuAsyncCopyBytes = 64 * 1024; // 64K
// NOTE(zcd): Do not use GpuMemcpySync as much as possible.
// because GpuMemcpySync issues the copying command to the default stream,
// which will make two commands from different streams cannot run concurrently.
// Reference:
// https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
template <>
void Copy<platform::CPUPlace, platform::CUDAPlace>(
platform::CPUPlace dst_place, void* dst, platform::CUDAPlace src_place,
const void* src, size_t num, cudaStream_t stream) {
platform::SetDeviceId(src_place.device);
if (stream) {
platform::RecordEvent record_event("GpuMemcpyAsync:GPU->CPU");
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream);
} else {
platform::RecordEvent record_event("GpuMemcpySync:GPU->CPU");
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost);
// FIXME(zjl): do we really need it?
if (num <= kMaxGpuAsyncCopyBytes) {
......@@ -61,10 +51,8 @@ void Copy<platform::CUDAPlace, platform::CPUPlace>(
const void* src, size_t num, cudaStream_t stream) {
platform::SetDeviceId(dst_place.device);
if (stream) {
platform::RecordEvent record_event("GpuMemcpyAsync:CPU->GPU");
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream);
} else {
platform::RecordEvent record_event("GpuMemcpySync:CPU->GPU");
platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice);
// FIXME(zjl): do we really need it?
if (num <= kMaxGpuAsyncCopyBytes) {
......@@ -80,19 +68,15 @@ void Copy<platform::CUDAPlace, platform::CUDAPlace>(
if (dst_place == src_place) {
platform::SetDeviceId(src_place.device);
if (stream) {
platform::RecordEvent record_event("GpuMemcpyAsync(same_gpu):GPU->GPU");
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToDevice, stream);
} else {
platform::RecordEvent record_event("GpuMemcpySync(same_gpu):GPU->GPU");
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToDevice);
}
} else {
if (stream) {
platform::RecordEvent record_event("GpuMemcpyPeerAsync:GPU->GPU");
platform::GpuMemcpyPeerAsync(dst, dst_place.device, src, src_place.device,
num, stream);
} else {
platform::RecordEvent record_event("GpuMemcpyPeerSync:GPU->GPU");
platform::GpuMemcpyPeerSync(dst, dst_place.device, src, src_place.device,
num);
}
......@@ -127,10 +111,8 @@ void Copy<platform::CUDAPinnedPlace, platform::CUDAPlace>(
cudaStream_t stream) {
platform::SetDeviceId(src_place.device);
if (stream) {
platform::RecordEvent record_event("GpuMemcpyAsync:GPU->CUDAPinned");
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream);
} else {
platform::RecordEvent record_event("GpuMemcpySync:GPU->CUDAPinned");
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost);
}
}
......@@ -142,10 +124,8 @@ void Copy<platform::CUDAPlace, platform::CUDAPinnedPlace>(
cudaStream_t stream) {
platform::SetDeviceId(dst_place.device);
if (stream) {
platform::RecordEvent record_event("GpuMemcpyAsync:CUDAPinned->GPU");
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream);
} else {
platform::RecordEvent record_event("GpuMemcpySync:CUDAPinned->GPU");
platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice);
}
}
......
......@@ -17,7 +17,6 @@
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace operators {
namespace reader {
......@@ -51,10 +50,9 @@ BufferedReader::BufferedReader(
.Get(place_)))
->stream();
events.resize(buffer_size);
PADDLE_ENFORCE(cudaStreamCreate(&stream));
for (auto &event : events) {
for (auto &event : events)
PADDLE_ENFORCE(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
}
PADDLE_ENFORCE(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
}
#endif
cpu_buffer_.resize(buffer_size);
......@@ -86,15 +84,12 @@ void BufferedReader::ReadAsync(size_t i) {
#ifdef PADDLE_WITH_CUDA
// NOTE(liangdun): using async copy instead of TensorCopySync
// TensorCopySync would block other stream, because TensorCopySync
// issues the copying command to the default stream, it will make two
// commands from different streams cannot run concurrently.
// TensorCopySync would block other stream
if (platform::is_gpu_place(place_)) {
platform::SetDeviceId(boost::get<platform::CUDAPlace>(place_).device);
PADDLE_ENFORCE(cudaStreamWaitEvent(stream, events[i], 0));
TensorVec &gpu = gpu_buffer_[i];
gpu.resize(cpu.size());
platform::RecordEvent record_event("BufferedReader:MemoryCopy");
for (size_t i = 0; i < cpu.size(); ++i) {
gpu[i].Resize(cpu[i].dims());
gpu[i].set_layout(cpu[i].layout());
......@@ -103,19 +98,20 @@ void BufferedReader::ReadAsync(size_t i) {
auto gpu_ptr = gpu[i].mutable_data(place_, cpu[i].type());
auto size =
cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());
if (platform::is_cuda_pinned_place(cpu_place)) {
if (platform::is_cuda_pinned_place(cpu_place))
memory::Copy(boost::get<platform::CUDAPlace>(place_), gpu_ptr,
boost::get<platform::CUDAPinnedPlace>(cpu_place),
cpu_ptr, size, stream);
} else if ((platform::is_gpu_place(cpu_place))) {
else if ((platform::is_gpu_place(cpu_place)))
memory::Copy(boost::get<platform::CUDAPlace>(place_), gpu_ptr,
boost::get<platform::CUDAPlace>(cpu_place), cpu_ptr,
size, stream);
} else {
else
// if cpu place is not pinned, async copy is slower than sync copy,
// so we use sync copy instead.
memory::Copy(boost::get<platform::CUDAPlace>(place_), gpu_ptr,
boost::get<platform::CPUPlace>(cpu_place), cpu_ptr, size,
stream);
}
0);
gpu[i].set_lod(cpu[i].lod());
}
PADDLE_ENFORCE(cudaStreamSynchronize(stream));
......
......@@ -30,6 +30,7 @@ limitations under the License. */
#include "glog/logging.h"
#include "google/protobuf/text_format.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
......@@ -221,24 +222,19 @@ void CUPTIAPI bufferCompleted(CUcontext ctx, uint32_t streamId, uint8_t *buffer,
}
case CUPTI_ACTIVITY_KIND_DRIVER: {
auto *api = reinterpret_cast<const CUpti_ActivityAPI *>(record);
if (api->start != 0 && api->end != 0) {
// -1 device id represents ActiveKind api call
tracer->AddActiveKindRecords(
if (api->start != 0 && api->end != 0)
// -1 device id represents CUDA api call
tracer->AddCPURecords(
DriverKind(api->cbid), api->start, api->end, -1,
GetThreadIdFromSystemThreadId(api->threadId),
api->correlationId);
}
GetThreadIdFromSystemThreadId(api->threadId));
break;
}
case CUPTI_ACTIVITY_KIND_RUNTIME: {
auto *api = reinterpret_cast<const CUpti_ActivityAPI *>(record);
if (api->start != 0 && api->end != 0) {
// -1 device id represents ActiveKind api call
tracer->AddActiveKindRecords(
if (api->start != 0 && api->end != 0)
tracer->AddCPURecords(
RuntimeKind(api->cbid), api->start, api->end, -1,
GetThreadIdFromSystemThreadId(api->threadId),
api->correlationId);
}
GetThreadIdFromSystemThreadId(api->threadId));
break;
}
default: { break; }
......@@ -317,25 +313,6 @@ class DeviceTracerImpl : public DeviceTracer {
stream_id, correlation_id, bytes});
}
void AddActiveKindRecords(const std::string &anno, uint64_t start_ns,
uint64_t end_ns, int64_t device_id,
int64_t thread_id, uint32_t correlation_id) {
if (anno.empty()) {
VLOG(1) << "Empty timeline annotation.";
return;
}
thread_local std::forward_list<ActiveKindRecord>
*local_active_kind_records = nullptr;
if (local_active_kind_records == nullptr) {
std::lock_guard<std::mutex> l(trace_mu_);
active_kind_records_.emplace_front();
local_active_kind_records = &active_kind_records_.front();
}
// lock is not needed, only one thread call this function.
local_active_kind_records->push_front(ActiveKindRecord{
anno, start_ns, end_ns, device_id, thread_id, correlation_id});
}
void AddKernelRecords(std::string name, uint64_t start, uint64_t end,
int64_t device_id, int64_t stream_id,
uint32_t correlation_id) {
......@@ -378,7 +355,6 @@ class DeviceTracerImpl : public DeviceTracer {
}
const std::vector<int> cbids {
CUPTI_RUNTIME_TRACE_CBID_cudaMemcpy_v3020,
CUPTI_RUNTIME_TRACE_CBID_cudaSetupArgument_v3020,
CUPTI_RUNTIME_TRACE_CBID_cudaMemcpyAsync_v3020,
CUPTI_RUNTIME_TRACE_CBID_cudaMemset_v3020,
CUPTI_RUNTIME_TRACE_CBID_cudaMemsetAsync_v3020,
......@@ -409,7 +385,6 @@ class DeviceTracerImpl : public DeviceTracer {
correlations_.clear();
for (auto &tmp : correlations_pairs) tmp.clear();
for (auto &tmp : cpu_records_) tmp.clear();
for (auto &tmp : active_kind_records_) tmp.clear();
}
void GenEventKernelCudaElapsedTime() {
......@@ -462,7 +437,7 @@ class DeviceTracerImpl : public DeviceTracer {
event->set_device_id(r.device_id);
}
VLOG(1) << "KernelRecord event miss: " << miss << " find: " << find;
for (auto &tmp : cpu_records_) {
for (auto &tmp : cpu_records_)
for (const CPURecord &r : tmp) {
auto *event = profile_pb.add_events();
event->set_type(proto::Event::CPU);
......@@ -472,24 +447,6 @@ class DeviceTracerImpl : public DeviceTracer {
event->set_sub_device_id(r.thread_id);
event->set_device_id(r.device_id);
}
}
for (auto &tmp : active_kind_records_) {
for (const ActiveKindRecord &r : tmp) {
auto *event = profile_pb.add_events();
event->set_type(proto::Event::CPU);
auto c = correlations_.find(r.correlation_id);
if (c != correlations_.end() && c->second != nullptr) {
event->set_name(c->second->name());
event->set_detail_info(r.name);
} else {
event->set_name(r.name);
}
event->set_start_ns(r.start_ns);
event->set_end_ns(r.end_ns);
event->set_sub_device_id(r.thread_id);
event->set_device_id(r.device_id);
}
}
miss = find = 0;
for (const MemRecord &r : mem_records_) {
auto *event = profile_pb.add_events();
......@@ -553,7 +510,6 @@ class DeviceTracerImpl : public DeviceTracer {
std::forward_list<KernelRecord> kernel_records_;
std::forward_list<MemRecord> mem_records_;
std::forward_list<std::forward_list<CPURecord>> cpu_records_;
std::forward_list<std::forward_list<ActiveKindRecord>> active_kind_records_;
std::forward_list<std::forward_list<std::pair<uint32_t, Event *>>>
correlations_pairs;
std::unordered_map<uint32_t, Event *> correlations_;
......@@ -657,7 +613,6 @@ void initCuptiCbidStr() {
REGISTER_RUNTIME_CBID_STR(cudaUnbindTexture_v3020);
REGISTER_RUNTIME_CBID_STR(cudaSetupArgument_v3020);
REGISTER_RUNTIME_CBID_STR(cudaLaunch_v3020);
REGISTER_RUNTIME_CBID_STR(cudaDeviceGetPCIBusId_v4010);
#if CUDA_VERSION >= 9000
REGISTER_RUNTIME_CBID_STR(cudaLaunchCooperativeKernel_v9000);
REGISTER_RUNTIME_CBID_STR(cudaLaunchCooperativeKernelMultiDevice_v9000);
......
......@@ -63,14 +63,7 @@ class DeviceTracer {
uint32_t correlation_id;
uint64_t bytes;
};
struct ActiveKindRecord {
std::string name;
uint64_t start_ns;
uint64_t end_ns;
int64_t device_id;
int64_t thread_id;
uint32_t correlation_id;
};
virtual ~DeviceTracer() {}
// Needs to be called once before use.
virtual void Enable() = 0;
......@@ -92,10 +85,6 @@ class DeviceTracer {
virtual void AddCPURecords(const std::string& anno, uint64_t start_ns,
uint64_t end_ns, int64_t device_id,
int64_t thread_id) = 0;
virtual void AddActiveKindRecords(const std::string& anno, uint64_t start_ns,
uint64_t end_ns, int64_t device_id,
int64_t thread_id,
uint32_t correlation_id) = 0;
// Add a cuda kernel stats. `correlation_id` will be mapped to annotation
// added before for human readability.
......
......@@ -131,7 +131,7 @@ class Timeline(object):
if (k, event.device_id, "CPU") not in self._devices:
pid = self._allocate_pid()
self._devices[(k, event.device_id, "CPU")] = pid
# -1 device id represents CUDA API(RunTime) call.(e.g. cudaLaunch, cudaMemcpy)
# -1 device id represents CUDA api call
if event.device_id == -1:
self._chrome_trace.emit_pid("%s:cuda_api" % k, pid)
else:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册