Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e249ad12
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e249ad12
编写于
1月 09, 2018
作者:
Y
Yancey
提交者:
GitHub
1月 09, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Test dist word2vec (#7334)
* test dist word2vec * multiple trainers work
上级
b5fda272
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
115 addition
and
6 deletion
+115
-6
paddle/framework/executor.cc
paddle/framework/executor.cc
+1
-1
paddle/framework/executor.h
paddle/framework/executor.h
+0
-2
paddle/operators/recv_op.cc
paddle/operators/recv_op.cc
+17
-3
paddle/operators/sum_op.h
paddle/operators/sum_op.h
+1
-0
python/paddle/v2/fluid/tests/book_distribute/test_dist_word2vec.py
...ddle/v2/fluid/tests/book_distribute/test_dist_word2vec.py
+96
-0
未找到文件。
paddle/framework/executor.cc
浏览文件 @
e249ad12
...
...
@@ -35,7 +35,7 @@ const std::string kFetchOpType = "fetch";
Executor
::
Executor
(
const
platform
::
Place
&
place
)
:
place_
(
place
)
{}
void
CreateTensor
(
Variable
*
var
,
proto
::
VarDesc
::
VarType
var_type
)
{
static
void
CreateTensor
(
Variable
*
var
,
proto
::
VarDesc
::
VarType
var_type
)
{
if
(
var_type
==
proto
::
VarDesc
::
LOD_TENSOR
)
{
var
->
GetMutable
<
LoDTensor
>
();
}
else
if
(
var_type
==
proto
::
VarDesc
::
SELECTED_ROWS
)
{
...
...
paddle/framework/executor.h
浏览文件 @
e249ad12
...
...
@@ -45,7 +45,5 @@ class Executor {
const
platform
::
Place
place_
;
};
void
CreateTensor
(
Variable
*
var
,
proto
::
VarDesc
::
VarType
var_type
);
}
// namespace framework
}
// namespace paddle
paddle/operators/recv_op.cc
浏览文件 @
e249ad12
...
...
@@ -32,6 +32,20 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
static
void
CreateTensorFromMessageType
(
framework
::
Variable
*
var
,
sendrecv
::
VarType
var_type
)
{
if
(
var_type
==
sendrecv
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
if
(
var_type
==
sendrecv
::
VarType
::
SELECTED_ROWS
)
{
var
->
GetMutable
<
framework
::
SelectedRows
>
();
}
else
{
PADDLE_THROW
(
"VraibleMessage type %d is not in "
"[LoDTensor, SelectedRows]"
,
var_type
);
}
}
void
RunServer
(
Server
**
rpc_server
,
std
::
shared_ptr
<
detail
::
SendRecvServerImpl
>
service
,
const
std
::
string
&
server_address
)
{
...
...
@@ -111,10 +125,10 @@ class RecvOp : public framework::OperatorBase {
auto
*
merged_grad
=
recv_scope
.
FindVar
(
grad_var_name
);
if
(
merged_grad
==
nullptr
)
{
auto
*
ptr
=
recv_scope
.
Var
(
grad_var_name
);
framework
::
CreateTensor
(
ptr
,
framework
::
ToVarType
(
merged_grad
->
Type
()));
CreateTensorFromMessageType
(
ptr
,
v
.
second
.
type
());
VLOG
(
3
)
<<
"Create Variable "
<<
grad_var_name
<<
" on recv scope, which pointer is "
<<
ptr
;
<<
" on recv scope, which pointer is "
<<
ptr
<<
" type is "
<<
v
.
second
.
type
();
}
if
(
trainer_count
>
1
)
{
...
...
paddle/operators/sum_op.h
浏览文件 @
e249ad12
...
...
@@ -70,6 +70,7 @@ class SumKernel : public framework::OpKernel<T> {
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
PADDLE_ENFORCE
(
!
in_place
,
"SelectedRows not support inplace sum now"
);
auto
*
out
=
context
.
Output
<
SelectedRows
>
(
"Out"
);
out
->
mutable_rows
()
->
clear
();
auto
*
out_value
=
out
->
mutable_value
();
// Runtime InferShape
...
...
python/paddle/v2/fluid/tests/book_distribute/test_dist_word2vec.py
0 → 100644
浏览文件 @
e249ad12
from
__future__
import
print_function
import
numpy
as
np
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
import
os
PASS_NUM
=
100
EMBED_SIZE
=
32
HIDDEN_SIZE
=
256
N
=
5
BATCH_SIZE
=
32
IS_SPARSE
=
True
TRAINERS
=
2
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
first_word
=
fluid
.
layers
.
data
(
name
=
'firstw'
,
shape
=
[
1
],
dtype
=
'int64'
)
second_word
=
fluid
.
layers
.
data
(
name
=
'secondw'
,
shape
=
[
1
],
dtype
=
'int64'
)
third_word
=
fluid
.
layers
.
data
(
name
=
'thirdw'
,
shape
=
[
1
],
dtype
=
'int64'
)
forth_word
=
fluid
.
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
dtype
=
'int64'
)
next_word
=
fluid
.
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
dtype
=
'int64'
)
embed_first
=
fluid
.
layers
.
embedding
(
input
=
first_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_second
=
fluid
.
layers
.
embedding
(
input
=
second_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_third
=
fluid
.
layers
.
embedding
(
input
=
third_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_forth
=
fluid
.
layers
.
embedding
(
input
=
forth_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
concat_embed
=
fluid
.
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
concat_embed
,
size
=
HIDDEN_SIZE
,
act
=
'sigmoid'
)
predict_word
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
next_word
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
optimize_ops
,
params_grads
=
sgd_optimizer
.
minimize
(
avg_cost
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
t
=
fluid
.
DistributeTranspiler
()
# all parameter server endpoints list for spliting parameters
pserver_endpoints
=
os
.
getenv
(
"PSERVERS"
)
# server endpoint for current node
current_endpoint
=
os
.
getenv
(
"SERVER_ENDPOINT"
)
# run as trainer or parameter server
training_role
=
os
.
getenv
(
"TRAINING_ROLE"
,
"TRAINER"
)
# get the training role: trainer/pserver
t
.
transpile
(
optimize_ops
,
params_grads
,
pservers
=
pserver_endpoints
,
trainers
=
TRAINERS
)
if
training_role
==
"PSERVER"
:
if
not
current_endpoint
:
print
(
"need env SERVER_ENDPOINT"
)
exit
(
1
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
,
optimize_ops
)
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
pserver_prog
)
elif
training_role
==
"TRAINER"
:
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
],
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
pass_id
in
range
(
PASS_NUM
):
for
data
in
train_reader
():
avg_cost_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
print
(
"avg_cost_np"
,
avg_cost_np
)
if
avg_cost_np
[
0
]
<
5.0
:
exit
(
0
)
# if avg cost less than 10.0, we think our code is good.
else
:
print
(
"environment var TRAINER_ROLE should be TRAINER os PSERVER"
)
exit
(
1
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录