未验证 提交 e1c707fe 编写于 作者: T tensor-tang 提交者: GitHub

fix warnings (#15790)

* fix warnings

test=develop

* fix enforce test

test=develop
上级 6402424f
...@@ -30,7 +30,7 @@ void BroadcastOpHandle::RunImpl() { ...@@ -30,7 +30,7 @@ void BroadcastOpHandle::RunImpl() {
VarHandle *in_var_handle; VarHandle *in_var_handle;
{ {
auto in_var_handles = DynamicCast<VarHandle>(inputs_); auto in_var_handles = DynamicCast<VarHandle>(inputs_);
PADDLE_ENFORCE_EQ(in_var_handles.size(), 1, PADDLE_ENFORCE_EQ(in_var_handles.size(), 1UL,
"The number of input should be one."); "The number of input should be one.");
in_var_handle = in_var_handles[0]; in_var_handle = in_var_handles[0];
} }
......
...@@ -86,7 +86,7 @@ std::vector<std::array<int, 3>> DataBalanceOpHandle::GetBalancePlan( ...@@ -86,7 +86,7 @@ std::vector<std::array<int, 3>> DataBalanceOpHandle::GetBalancePlan(
} }
void DataBalanceOpHandle::RunImpl() { void DataBalanceOpHandle::RunImpl() {
PADDLE_ENFORCE_GT(places_.size(), 1, PADDLE_ENFORCE_GT(places_.size(), 1UL,
"Data balance can only be enabled when the number of " "Data balance can only be enabled when the number of "
"places to run larger than 1."); "places to run larger than 1.");
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs()); auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
......
...@@ -23,7 +23,7 @@ void FuseVarsOpHandle::RunImpl() { ...@@ -23,7 +23,7 @@ void FuseVarsOpHandle::RunImpl() {
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs()); auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto out_var_handles = DynamicCast<VarHandle>(this->Outputs()); auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
PADDLE_ENFORCE_EQ(in_var_handles.size(), 0); PADDLE_ENFORCE_EQ(in_var_handles.size(), 0UL);
PADDLE_ENFORCE_EQ(out_var_handles.size() - 1, inputs_numel_.size(), ""); PADDLE_ENFORCE_EQ(out_var_handles.size() - 1, inputs_numel_.size(), "");
auto scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>(); auto scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
......
...@@ -153,7 +153,7 @@ void ReduceOpHandle::RunImpl() { ...@@ -153,7 +153,7 @@ void ReduceOpHandle::RunImpl() {
{ {
auto out_var_handles = DynamicCast<VarHandle>(outputs_); auto out_var_handles = DynamicCast<VarHandle>(outputs_);
PADDLE_ENFORCE_EQ(out_var_handles.size(), 1, PADDLE_ENFORCE_EQ(out_var_handles.size(), 1UL,
"The number of output should be one."); "The number of output should be one.");
out_var_handle = out_var_handles.front(); out_var_handle = out_var_handles.front();
} }
......
...@@ -169,7 +169,7 @@ std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl( ...@@ -169,7 +169,7 @@ std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
if (has_bias && conv->Op()->Input("Bias").size() > 0) { if (has_bias && conv->Op()->Input("Bias").size() > 0) {
// reuse existing conv bias node // reuse existing conv bias node
auto conv_bias_names = conv->Op()->Input("Bias"); auto conv_bias_names = conv->Op()->Input("Bias");
PADDLE_ENFORCE_EQ(conv_bias_names.size(), 1); PADDLE_ENFORCE_EQ(conv_bias_names.size(), 1UL);
auto* conv_bias_var = scope->FindVar(conv_bias_names[0]); auto* conv_bias_var = scope->FindVar(conv_bias_names[0]);
auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>(); auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>();
PADDLE_ENFORCE_EQ(conv_bias_tensor->dims(), PADDLE_ENFORCE_EQ(conv_bias_tensor->dims(),
......
...@@ -111,7 +111,7 @@ std::unique_ptr<ir::Graph> FuseReluDepthwiseConvPass::FuseReluDepthwiseConv( ...@@ -111,7 +111,7 @@ std::unique_ptr<ir::Graph> FuseReluDepthwiseConvPass::FuseReluDepthwiseConv(
xg_var = subgraph.at(xg)->Var(); xg_var = subgraph.at(xg)->Var();
} }
PADDLE_ENFORCE_EQ(layer_op->Input("Input").size(), 1); PADDLE_ENFORCE_EQ(layer_op->Input("Input").size(), 1UL);
PADDLE_ENFORCE_EQ(layer_op->Input("Input")[0], y_var->Name()); PADDLE_ENFORCE_EQ(layer_op->Input("Input")[0], y_var->Name());
layer_op->SetInput("Input", {x_var->Name()}); layer_op->SetInput("Input", {x_var->Name()});
subgraph.at(layer)->inputs.push_back(subgraph.at(x)); subgraph.at(layer)->inputs.push_back(subgraph.at(x));
...@@ -119,13 +119,13 @@ std::unique_ptr<ir::Graph> FuseReluDepthwiseConvPass::FuseReluDepthwiseConv( ...@@ -119,13 +119,13 @@ std::unique_ptr<ir::Graph> FuseReluDepthwiseConvPass::FuseReluDepthwiseConv(
VLOG(4) << "replace " << y_var->Name() << " -> " << x_var->Name(); VLOG(4) << "replace " << y_var->Name() << " -> " << x_var->Name();
if (!only_forward) { if (!only_forward) {
PADDLE_ENFORCE_EQ(layer_g_op->Input("Input").size(), 1); PADDLE_ENFORCE_EQ(layer_g_op->Input("Input").size(), 1UL);
PADDLE_ENFORCE_EQ(layer_g_op->Input("Input")[0], y_var->Name()); PADDLE_ENFORCE_EQ(layer_g_op->Input("Input")[0], y_var->Name());
layer_g_op->SetInput("Input", {x_var->Name()}); layer_g_op->SetInput("Input", {x_var->Name()});
subgraph.at(layer_g)->inputs.push_back(subgraph.at(x)); subgraph.at(layer_g)->inputs.push_back(subgraph.at(x));
subgraph.at(x)->outputs.push_back(subgraph.at(layer_g)); subgraph.at(x)->outputs.push_back(subgraph.at(layer_g));
PADDLE_ENFORCE_EQ(layer_g_op->Output(GradVarName("Input")).size(), 1); PADDLE_ENFORCE_EQ(layer_g_op->Output(GradVarName("Input")).size(), 1UL);
PADDLE_ENFORCE_EQ(layer_g_op->Output(GradVarName("Input"))[0], PADDLE_ENFORCE_EQ(layer_g_op->Output(GradVarName("Input"))[0],
yg_var->Name()); yg_var->Name());
layer_g_op->SetOutput(GradVarName("Input"), {xg_var->Name()}); layer_g_op->SetOutput(GradVarName("Input"), {xg_var->Name()});
......
...@@ -38,7 +38,7 @@ size_t PDPattern::id_ = 0UL; ...@@ -38,7 +38,7 @@ size_t PDPattern::id_ = 0UL;
PDNode *PDPattern::NewNode(const std::string &name) { PDNode *PDPattern::NewNode(const std::string &name) {
if (!name.empty()) { if (!name.empty()) {
PADDLE_ENFORCE_EQ(node_map_.count(name), 0, PADDLE_ENFORCE_EQ(node_map_.count(name), 0UL,
"PDNode's name should be unique, get duplicate [%s]", "PDNode's name should be unique, get duplicate [%s]",
name); name);
} }
...@@ -51,7 +51,7 @@ PDNode *PDPattern::NewNode(const std::string &name) { ...@@ -51,7 +51,7 @@ PDNode *PDPattern::NewNode(const std::string &name) {
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) { PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
if (!name.empty()) { if (!name.empty()) {
PADDLE_ENFORCE_EQ(node_map_.count(name), 0, PADDLE_ENFORCE_EQ(node_map_.count(name), 0UL,
"PDNode's name should be unique, get duplicate [%s]", "PDNode's name should be unique, get duplicate [%s]",
name); name);
} }
......
...@@ -92,7 +92,7 @@ void PaddleBuf::Reset(void *data, size_t length) { ...@@ -92,7 +92,7 @@ void PaddleBuf::Reset(void *data, size_t length) {
void PaddleBuf::Free() { void PaddleBuf::Free() {
if (memory_owned_ && data_) { if (memory_owned_ && data_) {
PADDLE_ENFORCE_GT(length_, 0); PADDLE_ENFORCE_GT(length_, 0UL);
free(static_cast<char *>(data_)); free(static_cast<char *>(data_));
data_ = nullptr; data_ = nullptr;
length_ = 0; length_ = 0;
......
...@@ -56,14 +56,14 @@ struct DataRecord { ...@@ -56,14 +56,14 @@ struct DataRecord {
std::vector<float> slot_data; std::vector<float> slot_data;
split_to_float(data[1], ' ', &slot_data); split_to_float(data[1], ' ', &slot_data);
std::string name = data[0]; std::string name = data[0];
PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0, PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0UL,
"line %d, %s should be divisible", num_lines, name); "line %d, %s should be divisible", num_lines, name);
datasets[name].emplace_back(std::move(slot_data)); datasets[name].emplace_back(std::move(slot_data));
} }
num_samples = num_lines / num_slots; num_samples = num_lines / num_slots;
PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast<size_t>(num_lines), PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast<size_t>(num_lines),
"num samples should be divisible"); "num samples should be divisible");
PADDLE_ENFORCE_GT(num_samples, 0); PADDLE_ENFORCE_GT(num_samples, 0UL);
} }
void Prepare(int bs) { void Prepare(int bs) {
......
...@@ -293,7 +293,7 @@ class AttentionLSTMKernel : public framework::OpKernel<T> { ...@@ -293,7 +293,7 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
int len = x_lod[0][i + 1] - x_lod[0][i]; int len = x_lod[0][i + 1] - x_lod[0][i];
max_seq_len = max_seq_len < len ? len : max_seq_len; max_seq_len = max_seq_len < len ? len : max_seq_len;
} }
PADDLE_ENFORCE_EQ(x_lod.size(), 1, "Input(X)'s lod size must be 1."); PADDLE_ENFORCE_EQ(x_lod.size(), 1UL, "Input(X)'s lod size must be 1.");
PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D); PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
fc_out->Resize({max_seq_len, 1}); fc_out->Resize({max_seq_len, 1});
......
...@@ -52,7 +52,7 @@ class GetPlacesOp : public framework::OperatorBase { ...@@ -52,7 +52,7 @@ class GetPlacesOp : public framework::OperatorBase {
device_count = device_count =
is_gpu ? CUDADevCount() : std::thread::hardware_concurrency(); is_gpu ? CUDADevCount() : std::thread::hardware_concurrency();
} }
PADDLE_ENFORCE_NE(device_count, 0, "Cannot indicate %s device count", PADDLE_ENFORCE_NE(device_count, 0UL, "Cannot indicate %s device count",
is_gpu ? "GPU" : "CPU"); is_gpu ? "GPU" : "CPU");
auto out_var_name = Output("Out"); auto out_var_name = Output("Out");
......
...@@ -84,12 +84,12 @@ class CRFDecodingOp : public framework::OperatorWithKernel { ...@@ -84,12 +84,12 @@ class CRFDecodingOp : public framework::OperatorWithKernel {
"Output(ViterbiPath) should be not null."); "Output(ViterbiPath) should be not null.");
auto emission_dims = ctx->GetInputDim("Emission"); auto emission_dims = ctx->GetInputDim("Emission");
PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL, PADDLE_ENFORCE_EQ(emission_dims.size(), 2,
"The Input(Emission) should be a 2-D tensor."); "The Input(Emission) should be a 2-D tensor.");
PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed."); PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");
auto transition_dims = ctx->GetInputDim("Transition"); auto transition_dims = ctx->GetInputDim("Transition");
PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL, PADDLE_ENFORCE_EQ(transition_dims.size(), 2,
"The Input(Transition) should be a 2-D tensor."); "The Input(Transition) should be a 2-D tensor.");
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
transition_dims[0] - 2, transition_dims[1], transition_dims[0] - 2, transition_dims[1],
......
...@@ -85,7 +85,7 @@ class AnchorGeneratorOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -85,7 +85,7 @@ class AnchorGeneratorOpMaker : public framework::OpProtoAndCheckerMaker {
" For instance, the anchor size of 64 means the area of this anchor " " For instance, the anchor size of 64 means the area of this anchor "
"equals to 64**2.") "equals to 64**2.")
.AddCustomChecker([](const std::vector<float>& anchor_sizes) { .AddCustomChecker([](const std::vector<float>& anchor_sizes) {
PADDLE_ENFORCE_GT(anchor_sizes.size(), 0, PADDLE_ENFORCE_GT(anchor_sizes.size(), 0UL,
"Size of anchor_sizes must be at least 1."); "Size of anchor_sizes must be at least 1.");
for (size_t i = 0; i < anchor_sizes.size(); ++i) { for (size_t i = 0; i < anchor_sizes.size(); ++i) {
PADDLE_ENFORCE_GT(anchor_sizes[i], 0.0, PADDLE_ENFORCE_GT(anchor_sizes[i], 0.0,
...@@ -103,7 +103,7 @@ class AnchorGeneratorOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -103,7 +103,7 @@ class AnchorGeneratorOpMaker : public framework::OpProtoAndCheckerMaker {
"(vector<float>) List of variances to be used " "(vector<float>) List of variances to be used "
"in box regression deltas") "in box regression deltas")
.AddCustomChecker([](const std::vector<float>& variances) { .AddCustomChecker([](const std::vector<float>& variances) {
PADDLE_ENFORCE_EQ(variances.size(), 4, PADDLE_ENFORCE_EQ(variances.size(), 4UL,
"Must and only provide 4 variance."); "Must and only provide 4 variance.");
for (size_t i = 0; i < variances.size(); ++i) { for (size_t i = 0; i < variances.size(); ++i) {
PADDLE_ENFORCE_GT(variances[i], 0.0, PADDLE_ENFORCE_GT(variances[i], 0.0,
...@@ -117,7 +117,7 @@ class AnchorGeneratorOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -117,7 +117,7 @@ class AnchorGeneratorOpMaker : public framework::OpProtoAndCheckerMaker {
.SetDefault(std::vector<float>(2, 16.0)) .SetDefault(std::vector<float>(2, 16.0))
.AddCustomChecker([](const std::vector<float>& stride) { .AddCustomChecker([](const std::vector<float>& stride) {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
stride.size(), 2, stride.size(), 2UL,
"Must and only provide 2 stride for width and height."); "Must and only provide 2 stride for width and height.");
for (size_t i = 0; i < stride.size(); ++i) { for (size_t i = 0; i < stride.size(); ++i) {
PADDLE_ENFORCE_GT(stride[i], 0.0, PADDLE_ENFORCE_GT(stride[i], 0.0,
......
...@@ -47,7 +47,7 @@ void FCOp::InferShape(framework::InferShapeContext* ctx) const { ...@@ -47,7 +47,7 @@ void FCOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(in_dims.size() == 2 || in_dims.size() == 4, PADDLE_ENFORCE(in_dims.size() == 2 || in_dims.size() == 4,
"Fully Connected input should be 2-D or 4-D tensor."); "Fully Connected input should be 2-D or 4-D tensor.");
} }
PADDLE_ENFORCE_EQ(w_dims.size(), 2UL, PADDLE_ENFORCE_EQ(w_dims.size(), 2,
"Fully Connected input should be 2-D tensor."); "Fully Connected input should be 2-D tensor.");
int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims"); int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims");
PADDLE_ENFORCE_GT( PADDLE_ENFORCE_GT(
......
...@@ -47,10 +47,11 @@ struct EmbeddingVSumFunctor { ...@@ -47,10 +47,11 @@ struct EmbeddingVSumFunctor {
auto *output = output_t->mutable_data<T>(context.GetPlace()); auto *output = output_t->mutable_data<T>(context.GetPlace());
PADDLE_ENFORCE_LE(table_width * idx_width, out_width); PADDLE_ENFORCE_LE(table_width * idx_width, out_width);
PADDLE_ENFORCE_GT(ids_lod.size(), 1UL);
jit::emb_seq_pool_attr_t attr(table_height, table_width, 0, idx_width, jit::emb_seq_pool_attr_t attr(table_height, table_width, 0, idx_width,
out_width, jit::SeqPoolType::kSum); out_width, jit::SeqPoolType::kSum);
for (int64_t i = 0; i != ids_lod.size() - 1; ++i) { for (size_t i = 0; i != ids_lod.size() - 1; ++i) {
attr.index_height = ids_lod[i + 1] - ids_lod[i]; attr.index_height = ids_lod[i + 1] - ids_lod[i];
auto emb_seqpool = jit::Get<jit::kEmbSeqPool, jit::EmbSeqPoolTuples<T>, auto emb_seqpool = jit::Get<jit::kEmbSeqPool, jit::EmbSeqPoolTuples<T>,
platform::CPUPlace>(attr); platform::CPUPlace>(attr);
......
...@@ -37,7 +37,7 @@ void FusionRepeatedFCReluOp::InferShape( ...@@ -37,7 +37,7 @@ void FusionRepeatedFCReluOp::InferShape(
"Output(Out) of FusionRepeatedFCReluOp should not be null."); "Output(Out) of FusionRepeatedFCReluOp should not be null.");
auto i_dims = ctx->GetInputDim("X"); auto i_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(i_dims.size(), 2UL, "Input shape size should be 2"); PADDLE_ENFORCE_EQ(i_dims.size(), 2, "Input shape size should be 2");
auto w_dims = ctx->GetInputsDim("W"); auto w_dims = ctx->GetInputsDim("W");
auto b_dims = ctx->GetInputsDim("Bias"); auto b_dims = ctx->GetInputsDim("Bias");
...@@ -49,7 +49,7 @@ void FusionRepeatedFCReluOp::InferShape( ...@@ -49,7 +49,7 @@ void FusionRepeatedFCReluOp::InferShape(
"inpute width should be equal with weight height"); "inpute width should be equal with weight height");
for (size_t i = 1; i < sz; ++i) { for (size_t i = 1; i < sz; ++i) {
PADDLE_ENFORCE_EQ(w_dims[i].size(), 2UL, PADDLE_ENFORCE_EQ(w_dims[i].size(), 2,
"Every weight shape size should be 2."); "Every weight shape size should be 2.");
PADDLE_ENFORCE_EQ(framework::product(b_dims[i]), w_dims[i][1], PADDLE_ENFORCE_EQ(framework::product(b_dims[i]), w_dims[i][1],
"The length of Bias must be equal with w_dims[1]."); "The length of Bias must be equal with w_dims[1].");
......
...@@ -39,7 +39,7 @@ void FusionSeqExpandConcatFCOp::InferShape( ...@@ -39,7 +39,7 @@ void FusionSeqExpandConcatFCOp::InferShape(
auto ins_dims = ctx->GetInputsDim("X"); auto ins_dims = ctx->GetInputsDim("X");
auto w_dims = ctx->GetInputDim("FCWeight"); // (M0+M1+M2+..) x D auto w_dims = ctx->GetInputDim("FCWeight"); // (M0+M1+M2+..) x D
PADDLE_ENFORCE_EQ(w_dims.size(), 2UL, "Input(FCWeight)'s rank must be 2."); PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(FCWeight)'s rank must be 2.");
const int D = w_dims[1]; const int D = w_dims[1];
int sum = ins_dims[0][1]; int sum = ins_dims[0][1];
for (size_t i = 1; i < ins_dims.size(); ++i) { for (size_t i = 1; i < ins_dims.size(); ++i) {
......
...@@ -39,7 +39,7 @@ void FusionSeqPoolConcatOp::InferShape( ...@@ -39,7 +39,7 @@ void FusionSeqPoolConcatOp::InferShape(
// The output height should be confirmed in Compute, // The output height should be confirmed in Compute,
// since input lod is not accessible here. // since input lod is not accessible here.
PADDLE_ENFORCE_EQ(ins_dims[0].size(), 2UL, PADDLE_ENFORCE_EQ(ins_dims[0].size(), 2,
"The dims size of first input should be 2."); "The dims size of first input should be 2.");
ctx->SetOutputDim("Out", {-1, ins_dims[0][axis] * static_cast<int>(n)}); ctx->SetOutputDim("Out", {-1, ins_dims[0][axis] * static_cast<int>(n)});
} }
......
...@@ -42,7 +42,7 @@ void FusionSquaredMatSubOp::InferShape( ...@@ -42,7 +42,7 @@ void FusionSquaredMatSubOp::InferShape(
auto y_dims = ctx->GetInputDim("Y"); auto y_dims = ctx->GetInputDim("Y");
PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(), PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
"Input tensors dims size should be equal."); "Input tensors dims size should be equal.");
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input tensors should be a Matrix."); PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input tensors should be a Matrix.");
PADDLE_ENFORCE_EQ(x_dims[1], y_dims[0], "Inputs Matrix should be multiply."); PADDLE_ENFORCE_EQ(x_dims[1], y_dims[0], "Inputs Matrix should be multiply.");
ctx->SetOutputDim("SquaredX", x_dims); ctx->SetOutputDim("SquaredX", x_dims);
......
...@@ -44,11 +44,11 @@ class LayerNormOp : public framework::OperatorWithKernel { ...@@ -44,11 +44,11 @@ class LayerNormOp : public framework::OperatorWithKernel {
int left = static_cast<int>(matrix_dim[0]); int left = static_cast<int>(matrix_dim[0]);
int right = static_cast<int>(matrix_dim[1]); int right = static_cast<int>(matrix_dim[1]);
if (ctx->HasInput("Scale")) { if (ctx->HasInput("Scale")) {
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1);
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], right); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], right);
} }
if (ctx->HasInput("Bias")) { if (ctx->HasInput("Bias")) {
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1);
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], right); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], right);
} }
......
...@@ -144,12 +144,12 @@ class LinearChainCRFOp : public framework::OperatorWithKernel { ...@@ -144,12 +144,12 @@ class LinearChainCRFOp : public framework::OperatorWithKernel {
"Output(LogLikelihood) should be not null."); "Output(LogLikelihood) should be not null.");
auto emission_dims = ctx->GetInputDim("Emission"); auto emission_dims = ctx->GetInputDim("Emission");
PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL, PADDLE_ENFORCE_EQ(emission_dims.size(), 2,
"The Input(Emission) should be a 2-D tensor."); "The Input(Emission) should be a 2-D tensor.");
PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed."); PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");
auto transition_dims = ctx->GetInputDim("Transition"); auto transition_dims = ctx->GetInputDim("Transition");
PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL, PADDLE_ENFORCE_EQ(transition_dims.size(), 2,
"The Input(Transition) should be a 2-D tensor."); "The Input(Transition) should be a 2-D tensor.");
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
transition_dims[0] - 2, transition_dims[1], transition_dims[0] - 2, transition_dims[1],
...@@ -202,13 +202,13 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel { ...@@ -202,13 +202,13 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
"Input(LogLikelihood@GRAD) shoudl be not null."); "Input(LogLikelihood@GRAD) shoudl be not null.");
auto emission_exps_dims = ctx->GetInputDim("EmissionExps"); auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2UL, PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2,
"The Input(EmissionExps) should be a 2-D tensor."); "The Input(EmissionExps) should be a 2-D tensor.");
PADDLE_ENFORCE(emission_exps_dims[0], PADDLE_ENFORCE(emission_exps_dims[0],
"An empty mini-batch is not allowed."); "An empty mini-batch is not allowed.");
auto transition_exps_dims = ctx->GetInputDim("TransitionExps"); auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2UL, PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2,
"The Input(TransitionExps) should be a 2-D tensor."); "The Input(TransitionExps) should be a 2-D tensor.");
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
transition_exps_dims[0] - 2, transition_exps_dims[1], transition_exps_dims[0] - 2, transition_exps_dims[1],
......
...@@ -31,10 +31,10 @@ class SequenceEnumerateOp : public framework::OperatorWithKernel { ...@@ -31,10 +31,10 @@ class SequenceEnumerateOp : public framework::OperatorWithKernel {
const auto x_dims = ctx->GetInputDim("X"); const auto x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
x_dims.size(), 2UL, x_dims.size(), 2,
"Input(X) of SequenceEnumerate operator's rank should be 2."); "Input(X) of SequenceEnumerate operator's rank should be 2.");
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
x_dims[1], 1UL, x_dims[1], 1,
"Input(X) of SequenceEnumerate operator's 2nd dimension should be 1."); "Input(X) of SequenceEnumerate operator's 2nd dimension should be 1.");
const auto win_size = ctx->Attrs().Get<int>("win_size"); const auto win_size = ctx->Attrs().Get<int>("win_size");
......
...@@ -48,10 +48,10 @@ class SequenceExpandOp : public framework::OperatorWithKernel { ...@@ -48,10 +48,10 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
auto& x_lod = x_var->Get<LoDTensor>().lod(); auto& x_lod = x_var->Get<LoDTensor>().lod();
auto& y_lod = y_var->Get<LoDTensor>().lod(); auto& y_lod = y_var->Get<LoDTensor>().lod();
PADDLE_ENFORCE_LE(x_lod.size(), 1, PADDLE_ENFORCE_LE(x_lod.size(), 1UL,
"Level number of Input(X)'s lod should not be " "Level number of Input(X)'s lod should not be "
"greater than 1."); "greater than 1.");
PADDLE_ENFORCE_GT(y_lod.size(), 0, PADDLE_ENFORCE_GT(y_lod.size(), 0UL,
"Level number of Input(Y)'s lod should be " "Level number of Input(Y)'s lod should be "
"greater than 0."); "greater than 0.");
PADDLE_ENFORCE( PADDLE_ENFORCE(
...@@ -69,7 +69,8 @@ class SequenceExpandOp : public framework::OperatorWithKernel { ...@@ -69,7 +69,8 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
"size of Input(X)'s first level lod should be equal to " "size of Input(X)'s first level lod should be equal to "
"size of Input(Y)'s referred level lod."); "size of Input(Y)'s referred level lod.");
} else { } else {
PADDLE_ENFORCE_EQ(x_dims[0], y_lod[ref_level].size() - 1, PADDLE_ENFORCE_EQ(x_dims[0],
static_cast<int64_t>(y_lod[ref_level].size()) - 1,
"When Input(X)'s lod is null, the dims[0] of " "When Input(X)'s lod is null, the dims[0] of "
"Input(X) should match the " "Input(X) should match the "
"size of Input(Y)'s referred level lod."); "size of Input(Y)'s referred level lod.");
......
...@@ -118,59 +118,58 @@ TEST(ENFORCE_GT, OK) { PADDLE_ENFORCE_GT(2, 1); } ...@@ -118,59 +118,58 @@ TEST(ENFORCE_GT, OK) { PADDLE_ENFORCE_GT(2, 1); }
TEST(ENFORCE_GT, FAIL) { TEST(ENFORCE_GT, FAIL) {
bool caught_exception = false; bool caught_exception = false;
try { try {
PADDLE_ENFORCE_GT(1, 2UL); PADDLE_ENFORCE_GT(1, 2);
} catch (paddle::platform::EnforceNotMet error) { } catch (paddle::platform::EnforceNotMet error) {
caught_exception = true; caught_exception = true;
EXPECT_TRUE(HasPrefix( EXPECT_TRUE(
StringPiece(error.what()), HasPrefix(StringPiece(error.what()),
"Enforce failed. Expected 1 > 2UL, but received 1:1 <= 2UL:2.")); "Enforce failed. Expected 1 > 2, but received 1:1 <= 2:2."));
} }
EXPECT_TRUE(caught_exception); EXPECT_TRUE(caught_exception);
} }
TEST(ENFORCE_GE, OK) { TEST(ENFORCE_GE, OK) {
PADDLE_ENFORCE_GE(2, 2UL); PADDLE_ENFORCE_GE(2, 2);
PADDLE_ENFORCE_GE(3, 2UL);
PADDLE_ENFORCE_GE(3, 2); PADDLE_ENFORCE_GE(3, 2);
PADDLE_ENFORCE_GE(3.21, 2UL); PADDLE_ENFORCE_GE(3.21, 2.0);
} }
TEST(ENFORCE_GE, FAIL) { TEST(ENFORCE_GE, FAIL) {
bool caught_exception = false; bool caught_exception = false;
try { try {
PADDLE_ENFORCE_GE(1, 2UL); PADDLE_ENFORCE_GE(1, 2);
} catch (paddle::platform::EnforceNotMet error) { } catch (paddle::platform::EnforceNotMet error) {
caught_exception = true; caught_exception = true;
EXPECT_TRUE(HasPrefix( EXPECT_TRUE(
StringPiece(error.what()), HasPrefix(StringPiece(error.what()),
"Enforce failed. Expected 1 >= 2UL, but received 1:1 < 2UL:2.")); "Enforce failed. Expected 1 >= 2, but received 1:1 < 2:2."));
} }
EXPECT_TRUE(caught_exception); EXPECT_TRUE(caught_exception);
} }
TEST(ENFORCE_LE, OK) { TEST(ENFORCE_LE, OK) {
PADDLE_ENFORCE_LE(1, 1); PADDLE_ENFORCE_LE(1, 1);
PADDLE_ENFORCE_LE(1, 1UL); PADDLE_ENFORCE_LE(1UL, 1UL);
PADDLE_ENFORCE_LE(2, 3UL); PADDLE_ENFORCE_LE(2, 3);
PADDLE_ENFORCE_LE(2UL, 3); PADDLE_ENFORCE_LE(2UL, 3UL);
PADDLE_ENFORCE_LE(2UL, 3.2); PADDLE_ENFORCE_LE(2.0, 3.2);
} }
TEST(ENFORCE_LE, FAIL) { TEST(ENFORCE_LE, FAIL) {
bool caught_exception = false; bool caught_exception = false;
try { try {
PADDLE_ENFORCE_GT(1, 2UL); PADDLE_ENFORCE_GT(1, 2);
} catch (paddle::platform::EnforceNotMet error) { } catch (paddle::platform::EnforceNotMet error) {
caught_exception = true; caught_exception = true;
EXPECT_TRUE(HasPrefix( EXPECT_TRUE(
StringPiece(error.what()), HasPrefix(StringPiece(error.what()),
"Enforce failed. Expected 1 > 2UL, but received 1:1 <= 2UL:2.")); "Enforce failed. Expected 1 > 2, but received 1:1 <= 2:2."));
} }
EXPECT_TRUE(caught_exception); EXPECT_TRUE(caught_exception);
} }
TEST(ENFORCE_LT, OK) { TEST(ENFORCE_LT, OK) {
PADDLE_ENFORCE_LT(3, 10); PADDLE_ENFORCE_LT(3, 10);
PADDLE_ENFORCE_LT(2, 3UL); PADDLE_ENFORCE_LT(2UL, 3UL);
PADDLE_ENFORCE_LT(2UL, 3); PADDLE_ENFORCE_LT(2, 3);
} }
TEST(ENFORCE_LT, FAIL) { TEST(ENFORCE_LT, FAIL) {
bool caught_exception = false; bool caught_exception = false;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册