Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e18ab78f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e18ab78f
编写于
3月 29, 2019
作者:
A
AIFollowers
提交者:
qingqing01
3月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add model_stat.py (#16512)
* Add a tool to summary model's PARAMS, FLOPs in paddle/fluid/contrib.
上级
d4f63d82
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
194 addition
and
0 deletion
+194
-0
python/paddle/fluid/contrib/model_stat.py
python/paddle/fluid/contrib/model_stat.py
+194
-0
未找到文件。
python/paddle/fluid/contrib/model_stat.py
0 → 100644
浏览文件 @
e18ab78f
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Example:
>>from paddle.fluid.contrib.model_stat import summary
>>main_program = ...
>>summary(main_program)
+-----+------------+----------------+----------------+---------+------------+
| No. | TYPE | INPUT | OUTPUT | PARAMs | FLOPs |
+-----+------------+----------------+----------------+---------+------------+
| 0 | conv2d | (3, 200, 200) | (64, 100, 100) | 9408 | 188160000 |
| 1 | batch_norm | (64, 100, 100) | (64, 100, 100) | 256 | 640000 |
| 2 | relu | (64, 100, 100) | (64, 100, 100) | 0 | 640000 |
| 3 | pool2d | (64, 100, 100) | (64, 50, 50) | 0 | 1440000 |
...
| 176 | conv2d | (512, 7, 7) | (512, 7, 7) | 2359296 | 231211008 |
| 177 | relu | (512, 7, 7) | (512, 7, 7) | 0 | 25088 |
| 178 | conv2d | (512, 7, 7) | (2048, 7, 7) | 1048576 | 102760448 |
| 179 | relu | (2048, 7, 7) | (2048, 7, 7) | 0 | 100352 |
| 180 | pool2d | (2048, 7, 7) | (2048, 1, 1) | 0 | 100352 |
+-----+------------+----------------+----------------+---------+------------+
Total PARAMs: 48017344(0.0480G)
Total FLOPs: 11692747751(11.69G)
'''
from
collections
import
OrderedDict
from
prettytable
import
PrettyTable
def
summary
(
main_prog
):
'''
It can summary model's PARAMS, FLOPs until now.
It support common operator like conv, fc, pool, relu, sigmoid, bn etc.
Args:
main_prog: main program
Returns:
print summary on terminal
'''
collected_ops_list
=
[]
for
one_b
in
main_prog
.
blocks
:
block_vars
=
one_b
.
vars
for
one_op
in
one_b
.
ops
:
op_info
=
OrderedDict
()
spf_res
=
_summary_model
(
block_vars
,
one_op
)
if
spf_res
is
None
:
continue
# TODO: get the operator name
op_info
[
'type'
]
=
one_op
.
type
op_info
[
'input_shape'
]
=
spf_res
[
0
][
1
:]
op_info
[
'out_shape'
]
=
spf_res
[
1
][
1
:]
op_info
[
'PARAMs'
]
=
spf_res
[
2
]
op_info
[
'FLOPs'
]
=
spf_res
[
3
]
collected_ops_list
.
append
(
op_info
)
summary_table
,
total
=
_format_summary
(
collected_ops_list
)
_print_summary
(
summary_table
,
total
)
def
_summary_model
(
block_vars
,
one_op
):
'''
Compute operator's params and flops.
Args:
block_vars: all vars of one block
one_op: one operator to count
Returns:
in_data_shape: one operator's input data shape
out_data_shape: one operator's output data shape
params: one operator's PARAMs
flops: : one operator's FLOPs
'''
if
one_op
.
type
in
[
'conv2d'
,
'depthwise_conv2d'
]:
k_arg_shape
=
block_vars
[
one_op
.
input
(
"Filter"
)[
0
]].
shape
in_data_shape
=
block_vars
[
one_op
.
input
(
"Input"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Output"
)[
0
]].
shape
c_out
,
c_in
,
k_h
,
k_w
=
k_arg_shape
_
,
c_out_
,
h_out
,
w_out
=
out_data_shape
assert
c_out
==
c_out_
,
'shape error!'
k_groups
=
one_op
.
attr
(
"groups"
)
kernel_ops
=
k_h
*
k_w
*
(
c_in
/
k_groups
)
bias_ops
=
0
if
one_op
.
input
(
"Bias"
)
==
[]
else
1
params
=
c_out
*
(
kernel_ops
+
bias_ops
)
flops
=
h_out
*
w_out
*
c_out
*
(
kernel_ops
+
bias_ops
)
# base nvidia paper, include mul and add
flops
=
2
*
flops
elif
one_op
.
type
==
'pool2d'
:
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Out"
)[
0
]].
shape
_
,
c_out
,
h_out
,
w_out
=
out_data_shape
k_size
=
one_op
.
attr
(
"ksize"
)
params
=
0
flops
=
h_out
*
w_out
*
c_out
*
(
k_size
[
0
]
*
k_size
[
1
])
elif
one_op
.
type
==
'mul'
:
k_arg_shape
=
block_vars
[
one_op
.
input
(
"Y"
)[
0
]].
shape
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Out"
)[
0
]].
shape
# TODO: fc has mul ops
# add attr to mul op, tell us whether it belongs to 'fc'
# this's not the best way
if
'fc'
not
in
one_op
.
output
(
"Out"
)[
0
]:
return
None
k_in
,
k_out
=
k_arg_shape
# bias in sum op
params
=
k_in
*
k_out
+
1
flops
=
k_in
*
k_out
elif
one_op
.
type
in
[
'sigmoid'
,
'tanh'
,
'relu'
,
'leaky_relu'
,
'prelu'
]:
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Out"
)[
0
]].
shape
params
=
0
if
one_op
.
type
==
'prelu'
:
params
=
1
flops
=
1
for
one_dim
in
in_data_shape
:
flops
*=
one_dim
elif
one_op
.
type
==
'batch_norm'
:
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Y"
)[
0
]].
shape
_
,
c_in
,
h_out
,
w_out
=
in_data_shape
# gamma, beta
params
=
c_in
*
2
# compute mean and std
flops
=
h_out
*
w_out
*
c_in
*
2
else
:
return
None
return
in_data_shape
,
out_data_shape
,
params
,
flops
def
_format_summary
(
collected_ops_list
):
'''
Format summary report.
Args:
collected_ops_list: the collected operator with summary
Returns:
summary_table: summary report format
total: sum param and flops
'''
summary_table
=
PrettyTable
(
[
"No."
,
"TYPE"
,
"INPUT"
,
"OUTPUT"
,
"PARAMs"
,
"FLOPs"
])
summary_table
.
align
=
'r'
total
=
{}
total_params
=
[]
total_flops
=
[]
for
i
,
one_op
in
enumerate
(
collected_ops_list
):
# notice the order
table_row
=
[
i
,
one_op
[
'type'
],
one_op
[
'input_shape'
],
one_op
[
'out_shape'
],
int
(
one_op
[
'PARAMs'
]),
int
(
one_op
[
'FLOPs'
]),
]
summary_table
.
add_row
(
table_row
)
total_params
.
append
(
int
(
one_op
[
'PARAMs'
]))
total_flops
.
append
(
int
(
one_op
[
'FLOPs'
]))
total
[
'params'
]
=
total_params
total
[
'flops'
]
=
total_flops
return
summary_table
,
total
def
_print_summary
(
summary_table
,
total
):
'''
Print all the summary on terminal.
Args:
summary_table: summary report format
total: sum param and flops
'''
parmas
=
total
[
'params'
]
flops
=
total
[
'flops'
]
print
(
summary_table
)
print
(
'Total PARAMs: {}({:.4f}M)'
.
format
(
sum
(
parmas
),
sum
(
parmas
)
/
(
10
**
6
)))
print
(
'Total FLOPs: {}({:.2f}G)'
.
format
(
sum
(
flops
),
sum
(
flops
)
/
10
**
9
))
print
(
"Notice:
\n
now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu)]"
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录