未验证 提交 df99b16a 编写于 作者: K Kexin Zhao 提交者: GitHub

Merge pull request #9167 from kexinzhao/pool2d_fp16

Add float16 support for pool 2d operator
...@@ -28,6 +28,8 @@ using ScopedTensorDescriptor = platform::ScopedTensorDescriptor; ...@@ -28,6 +28,8 @@ using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor; using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor; using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout; using DataLayout = platform::DataLayout;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES = static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
static_cast<size_t>(1024) * 1024 * 1024; static_cast<size_t>(1024) * 1024 * 1024;
...@@ -134,8 +136,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> { ...@@ -134,8 +136,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace()); platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
// ------------------- cudnn conv forward --------------------- // ------------------- cudnn conv forward ---------------------
typename platform::CudnnDataType<T>::ScalingParamType alpha = 1.0f, ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
beta = 0.0f;
for (int i = 0; i < groups; i++) { for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward( PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in, handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
...@@ -282,8 +283,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> { ...@@ -282,8 +283,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace()); platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
// ------------------- cudnn conv backward data --------------------- // ------------------- cudnn conv backward data ---------------------
typename platform::CudnnDataType<T>::ScalingParamType alpha = 1.0f, ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
beta = 0.0f;
if (input_grad) { if (input_grad) {
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace()); T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
// Because beta is zero, it is unnecessary to reset input_grad. // Because beta is zero, it is unnecessary to reset input_grad.
......
...@@ -24,6 +24,8 @@ using ScopedTensorDescriptor = platform::ScopedTensorDescriptor; ...@@ -24,6 +24,8 @@ using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor; using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using DataLayout = platform::DataLayout; using DataLayout = platform::DataLayout;
using PoolingMode = platform::PoolingMode; using PoolingMode = platform::PoolingMode;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
template <typename T> template <typename T>
class PoolCUDNNOpKernel : public framework::OpKernel<T> { class PoolCUDNNOpKernel : public framework::OpKernel<T> {
...@@ -78,8 +80,7 @@ class PoolCUDNNOpKernel : public framework::OpKernel<T> { ...@@ -78,8 +80,7 @@ class PoolCUDNNOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn pool algorithm --------------------- // ------------------- cudnn pool algorithm ---------------------
auto handle = ctx.cuda_device_context().cudnn_handle(); auto handle = ctx.cuda_device_context().cudnn_handle();
T alpha = 1.0f, beta = 0.0f; ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
PADDLE_ENFORCE(platform::dynload::cudnnPoolingForward( PADDLE_ENFORCE(platform::dynload::cudnnPoolingForward(
handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta, handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
cudnn_output_desc, output_data)); cudnn_output_desc, output_data));
...@@ -144,8 +145,7 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> { ...@@ -144,8 +145,7 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn pool algorithm --------------------- // ------------------- cudnn pool algorithm ---------------------
auto handle = ctx.cuda_device_context().cudnn_handle(); auto handle = ctx.cuda_device_context().cudnn_handle();
T alpha = 1.0f, beta = 0.0f; ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
if (input_grad) { if (input_grad) {
T *input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace()); T *input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
// Because beta is zero, it is unnecessary to reset input_grad. // Because beta is zero, it is unnecessary to reset input_grad.
...@@ -162,17 +162,19 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> { ...@@ -162,17 +162,19 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(pool2d, CUDNN, ::paddle::platform::CUDAPlace, REGISTER_OP_KERNEL(pool2d, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNOpKernel<float>, ops::PoolCUDNNOpKernel<float>,
ops::PoolCUDNNOpKernel<double>); ops::PoolCUDNNOpKernel<double>,
REGISTER_OP_KERNEL(pool2d_grad, CUDNN, ::paddle::platform::CUDAPlace, ops::PoolCUDNNOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool2d_grad, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNGradOpKernel<float>, ops::PoolCUDNNGradOpKernel<float>,
ops::PoolCUDNNGradOpKernel<double>); ops::PoolCUDNNGradOpKernel<double>);
REGISTER_OP_KERNEL(pool3d, CUDNN, ::paddle::platform::CUDAPlace, REGISTER_OP_KERNEL(pool3d, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNOpKernel<float>, ops::PoolCUDNNOpKernel<float>,
ops::PoolCUDNNOpKernel<double>); ops::PoolCUDNNOpKernel<double>);
REGISTER_OP_KERNEL(pool3d_grad, CUDNN, ::paddle::platform::CUDAPlace, REGISTER_OP_KERNEL(pool3d_grad, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNGradOpKernel<float>, ops::PoolCUDNNGradOpKernel<float>,
ops::PoolCUDNNGradOpKernel<double>); ops::PoolCUDNNGradOpKernel<double>);
...@@ -124,11 +124,15 @@ framework::OpKernelType PoolOpGrad::GetExpectedKernelType( ...@@ -124,11 +124,15 @@ framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
} }
#endif #endif
auto input_data_type = framework::ToDataType(ctx.Input<Tensor>("X")->type());
if (input_data_type == framework::proto::VarType::FP16) {
PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
"float16 can only be used when CUDNN is used");
}
std::string data_format = ctx.Attr<std::string>("data_format"); std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout_ = framework::StringToDataLayout(data_format); framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
return framework::OpKernelType( return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(), library_);
layout_, library_);
} }
Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker) Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
......
...@@ -483,9 +483,9 @@ class OpTest(unittest.TestCase): ...@@ -483,9 +483,9 @@ class OpTest(unittest.TestCase):
input: input numpy array input: input numpy array
Returns: Returns:
input: if the dtype of input is np.float16, its dtype will be input: The dtype of input will be changed to np.uint16 if
changed to np.uint16 so that the internal memory will be it is originally np.float16, such that the internal memory
reinterpreted input as of dtype np.uint16. of input will be reinterpreted as of dtype np.uint16.
""" """
if input.dtype == np.float16: if input.dtype == np.float16:
input.dtype = np.uint16 input.dtype = np.uint16
......
...@@ -63,12 +63,13 @@ def conv2d_forward_naive(input, filter, group, conv_param): ...@@ -63,12 +63,13 @@ def conv2d_forward_naive(input, filter, group, conv_param):
class TestConv2dOp(OpTest): class TestConv2dOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "conv2d"
self.use_cudnn = False self.use_cudnn = False
self.use_mkldnn = False self.use_mkldnn = False
self.init_op_type() self.dtype = np.float32
self.init_kernel_type()
self.init_group() self.init_group()
self.init_dilation() self.init_dilation()
self.init_data_type()
self.init_test_case() self.init_test_case()
conv2d_param = { conv2d_param = {
...@@ -159,17 +160,14 @@ class TestConv2dOp(OpTest): ...@@ -159,17 +160,14 @@ class TestConv2dOp(OpTest):
f_c = self.input_size[1] / self.groups f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3] self.filter_size = [6, f_c, 3, 3]
def init_data_type(self):
self.dtype = np.float32
def init_dilation(self): def init_dilation(self):
self.dilations = [1, 1] self.dilations = [1, 1]
def init_group(self): def init_group(self):
self.groups = 1 self.groups = 1
def init_op_type(self): def init_kernel_type(self):
self.op_type = "conv2d" pass
class TestWithPad(TestConv2dOp): class TestWithPad(TestConv2dOp):
...@@ -241,13 +239,13 @@ class TestWithInput1x1Filter1x1(TestConv2dOp): ...@@ -241,13 +239,13 @@ class TestWithInput1x1Filter1x1(TestConv2dOp):
#----------------Conv2dCUDNN---------------- #----------------Conv2dCUDNN----------------
class TestCUDNN(TestConv2dOp): class TestCUDNN(TestConv2dOp):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "conv2d"
class TestFP16CUDNN(TestCUDNN): class TestFP16CUDNN(TestConv2dOp):
def init_data_type(self): def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16 self.dtype = np.float16
def test_check_output(self): def test_check_output(self):
...@@ -258,13 +256,13 @@ class TestFP16CUDNN(TestCUDNN): ...@@ -258,13 +256,13 @@ class TestFP16CUDNN(TestCUDNN):
class TestCUDNNWithPad(TestWithPad): class TestCUDNNWithPad(TestWithPad):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "conv2d"
class TestFP16CUDNNWithPad(TestCUDNNWithPad): class TestFP16CUDNNWithPad(TestWithPad):
def init_data_type(self): def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16 self.dtype = np.float16
def test_check_output(self): def test_check_output(self):
...@@ -275,13 +273,13 @@ class TestFP16CUDNNWithPad(TestCUDNNWithPad): ...@@ -275,13 +273,13 @@ class TestFP16CUDNNWithPad(TestCUDNNWithPad):
class TestCUDNNWithStride(TestWithStride): class TestCUDNNWithStride(TestWithStride):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "conv2d"
class TestFP16CUDNNWithStride(TestCUDNNWithStride): class TestFP16CUDNNWithStride(TestWithStride):
def init_data_type(self): def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16 self.dtype = np.float16
def test_check_output(self): def test_check_output(self):
...@@ -292,13 +290,13 @@ class TestFP16CUDNNWithStride(TestCUDNNWithStride): ...@@ -292,13 +290,13 @@ class TestFP16CUDNNWithStride(TestCUDNNWithStride):
class TestCUDNNWithGroup(TestWithGroup): class TestCUDNNWithGroup(TestWithGroup):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "conv2d"
class TestFP16CUDNNWithGroup(TestCUDNNWithGroup): class TestFP16CUDNNWithGroup(TestWithGroup):
def init_data_type(self): def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16 self.dtype = np.float16
def test_check_output(self): def test_check_output(self):
...@@ -309,13 +307,13 @@ class TestFP16CUDNNWithGroup(TestCUDNNWithGroup): ...@@ -309,13 +307,13 @@ class TestFP16CUDNNWithGroup(TestCUDNNWithGroup):
class TestCUDNNWith1x1(TestWith1x1): class TestCUDNNWith1x1(TestWith1x1):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "conv2d"
class TestFP16CUDNNWith1x1(TestCUDNNWith1x1): class TestFP16CUDNNWith1x1(TestWith1x1):
def init_data_type(self): def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16 self.dtype = np.float16
def test_check_output(self): def test_check_output(self):
...@@ -326,13 +324,13 @@ class TestFP16CUDNNWith1x1(TestCUDNNWith1x1): ...@@ -326,13 +324,13 @@ class TestFP16CUDNNWith1x1(TestCUDNNWith1x1):
class TestCUDNNWithInput1x1Filter1x1(TestWithInput1x1Filter1x1): class TestCUDNNWithInput1x1Filter1x1(TestWithInput1x1Filter1x1):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "conv2d"
class TestFP16CUDNNWithInput1x1Filter1x1(TestCUDNNWithInput1x1Filter1x1): class TestFP16CUDNNWithInput1x1Filter1x1(TestWithInput1x1Filter1x1):
def init_data_type(self): def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16 self.dtype = np.float16
def test_check_output(self): def test_check_output(self):
...@@ -375,21 +373,18 @@ class TestDepthwiseConv2(TestConv2dOp): ...@@ -375,21 +373,18 @@ class TestDepthwiseConv2(TestConv2dOp):
#----------------Conv2dMKLDNN---------------- #----------------Conv2dMKLDNN----------------
class TestMKLDNN(TestConv2dOp): class TestMKLDNN(TestConv2dOp):
def init_op_type(self): def init_kernel_type(self):
self.use_mkldnn = True self.use_mkldnn = True
self.op_type = "conv2d"
class TestMKLDNNWithPad(TestWithPad): class TestMKLDNNWithPad(TestWithPad):
def init_op_type(self): def init_kernel_type(self):
self.use_mkldnn = True self.use_mkldnn = True
self.op_type = "conv2d"
class TestMKLDNNWithStride(TestWithStride): class TestMKLDNNWithStride(TestWithStride):
def init_op_type(self): def init_kernel_type(self):
self.use_mkldnn = True self.use_mkldnn = True
self.op_type = "conv2d"
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -78,20 +78,22 @@ def avg_pool2D_forward_naive(x, ...@@ -78,20 +78,22 @@ def avg_pool2D_forward_naive(x,
class TestPool2d_Op(OpTest): class TestPool2d_Op(OpTest):
def setUp(self): def setUp(self):
self.op_type = "pool2d"
self.use_cudnn = False self.use_cudnn = False
self.use_mkldnn = False self.use_mkldnn = False
self.dtype = np.float32
self.init_test_case() self.init_test_case()
self.init_global_pool() self.init_global_pool()
self.init_op_type() self.init_kernel_type()
self.init_pool_type() self.init_pool_type()
self.init_ceil_mode() self.init_ceil_mode()
if self.global_pool: if self.global_pool:
self.paddings = [0 for _ in range(len(self.paddings))] self.paddings = [0 for _ in range(len(self.paddings))]
input = np.random.random(self.shape).astype("float32") input = np.random.random(self.shape).astype(self.dtype)
output = self.pool2D_forward_naive(input, self.ksize, self.strides, output = self.pool2D_forward_naive(input, self.ksize, self.strides,
self.paddings, self.global_pool, self.paddings, self.global_pool,
self.ceil_mode).astype("float32") self.ceil_mode).astype(self.dtype)
self.inputs = {'X': input} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
self.attrs = { self.attrs = {
'strides': self.strides, 'strides': self.strides,
...@@ -105,7 +107,7 @@ class TestPool2d_Op(OpTest): ...@@ -105,7 +107,7 @@ class TestPool2d_Op(OpTest):
'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter 'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter
} }
self.outputs = {'Out': output.astype('float32')} self.outputs = {'Out': output}
def test_check_output(self): def test_check_output(self):
if self.use_cudnn: if self.use_cudnn:
...@@ -115,6 +117,8 @@ class TestPool2d_Op(OpTest): ...@@ -115,6 +117,8 @@ class TestPool2d_Op(OpTest):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
if self.use_cudnn and self.pool_type != "max": if self.use_cudnn and self.pool_type != "max":
place = core.CUDAPlace(0) place = core.CUDAPlace(0)
self.check_grad_with_place( self.check_grad_with_place(
...@@ -128,8 +132,8 @@ class TestPool2d_Op(OpTest): ...@@ -128,8 +132,8 @@ class TestPool2d_Op(OpTest):
self.strides = [1, 1] self.strides = [1, 1]
self.paddings = [0, 0] self.paddings = [0, 0]
def init_op_type(self): def init_kernel_type(self):
self.op_type = "pool2d" pass
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "avg" self.pool_type = "avg"
...@@ -149,9 +153,6 @@ class TestCase1(TestPool2d_Op): ...@@ -149,9 +153,6 @@ class TestCase1(TestPool2d_Op):
self.strides = [1, 1] self.strides = [1, 1]
self.paddings = [0, 0] self.paddings = [0, 0]
def init_op_type(self):
self.op_type = "pool2d"
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "avg" self.pool_type = "avg"
self.pool2D_forward_naive = avg_pool2D_forward_naive self.pool2D_forward_naive = avg_pool2D_forward_naive
...@@ -167,9 +168,6 @@ class TestCase2(TestPool2d_Op): ...@@ -167,9 +168,6 @@ class TestCase2(TestPool2d_Op):
self.strides = [1, 1] self.strides = [1, 1]
self.paddings = [1, 1] self.paddings = [1, 1]
def init_op_type(self):
self.op_type = "pool2d"
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "avg" self.pool_type = "avg"
self.pool2D_forward_naive = avg_pool2D_forward_naive self.pool2D_forward_naive = avg_pool2D_forward_naive
...@@ -179,27 +177,18 @@ class TestCase2(TestPool2d_Op): ...@@ -179,27 +177,18 @@ class TestCase2(TestPool2d_Op):
class TestCase3(TestPool2d_Op): class TestCase3(TestPool2d_Op):
def init_op_type(self):
self.op_type = "pool2d"
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "max" self.pool_type = "max"
self.pool2D_forward_naive = max_pool2D_forward_naive self.pool2D_forward_naive = max_pool2D_forward_naive
class TestCase4(TestCase1): class TestCase4(TestCase1):
def init_op_type(self):
self.op_type = "pool2d"
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "max" self.pool_type = "max"
self.pool2D_forward_naive = max_pool2D_forward_naive self.pool2D_forward_naive = max_pool2D_forward_naive
class TestCase5(TestCase2): class TestCase5(TestCase2):
def init_op_type(self):
self.op_type = "pool2d"
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "max" self.pool_type = "max"
self.pool2D_forward_naive = max_pool2D_forward_naive self.pool2D_forward_naive = max_pool2D_forward_naive
...@@ -207,39 +196,105 @@ class TestCase5(TestCase2): ...@@ -207,39 +196,105 @@ class TestCase5(TestCase2):
#--------------------test pool2d-------------------- #--------------------test pool2d--------------------
class TestCUDNNCase1(TestPool2d_Op): class TestCUDNNCase1(TestPool2d_Op):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase1(TestPool2d_Op):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase2(TestCase1): class TestCUDNNCase2(TestCase1):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase2(TestCase1):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase3(TestCase2): class TestCUDNNCase3(TestCase2):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase3(TestCase2):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase4(TestCase3): class TestCUDNNCase4(TestCase3):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase4(TestCase3):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase5(TestCase4): class TestCUDNNCase5(TestCase4):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase5(TestCase4):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase6(TestCase5): class TestCUDNNCase6(TestCase5):
def init_op_type(self): def init_kernel_type(self):
self.use_cudnn = True self.use_cudnn = True
self.op_type = "pool2d"
class TestFP16CUDNNCase6(TestCase5):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCeilModeCase1(TestCUDNNCase1): class TestCeilModeCase1(TestCUDNNCase1):
...@@ -264,39 +319,33 @@ class TestCeilModeCase4(TestCase2): ...@@ -264,39 +319,33 @@ class TestCeilModeCase4(TestCase2):
#--------------------test pool2d MKLDNN-------------------- #--------------------test pool2d MKLDNN--------------------
class TestMKLDNNCase1(TestPool2d_Op): class TestMKLDNNCase1(TestPool2d_Op):
def init_op_type(self): def init_kernel_type(self):
self.use_mkldnn = True self.use_mkldnn = True
self.op_type = "pool2d"
class TestMKLDNNCase2(TestCase1): class TestMKLDNNCase2(TestCase1):
def init_op_type(self): def init_kernel_type(self):
self.use_mkldnn = True self.use_mkldnn = True
self.op_type = "pool2d"
class TestMKLDNNCase3(TestCase2): class TestMKLDNNCase3(TestCase2):
def init_op_type(self): def init_kernel_type(self):
self.use_mkldnn = True self.use_mkldnn = True
self.op_type = "pool2d"
class TestMKLDNNCase4(TestCase3): class TestMKLDNNCase4(TestCase3):
def init_op_type(self): def init_kernel_type(self):
self.use_mkldnn = True self.use_mkldnn = True
self.op_type = "pool2d"
class TestMKLDNNCase5(TestCase4): class TestMKLDNNCase5(TestCase4):
def init_op_type(self): def init_kernel_type(self):
self.use_mkldnn = True self.use_mkldnn = True
self.op_type = "pool2d"
class TestMKLDNNCase6(TestCase5): class TestMKLDNNCase6(TestCase5):
def init_op_type(self): def init_kernel_type(self):
self.use_mkldnn = True self.use_mkldnn = True
self.op_type = "pool2d"
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册