Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
df2b054b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
df2b054b
编写于
1月 03, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments refine code
上级
43606158
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
36 addition
and
81 deletion
+36
-81
paddle/gserver/layers/MKLPackedRecurrentLayer.cpp
paddle/gserver/layers/MKLPackedRecurrentLayer.cpp
+26
-38
paddle/gserver/layers/MKLPackedRecurrentLayer.h
paddle/gserver/layers/MKLPackedRecurrentLayer.h
+7
-22
paddle/gserver/layers/MKLPackedWeight.h
paddle/gserver/layers/MKLPackedWeight.h
+3
-17
paddle/gserver/layers/RecurrentLayer.cpp
paddle/gserver/layers/RecurrentLayer.cpp
+0
-4
未找到文件。
paddle/gserver/layers/MKLPackedRecurrentLayer.cpp
浏览文件 @
df2b054b
...
...
@@ -53,28 +53,19 @@ void MKLPackedRecurrentLayer::forwardBatch(int batchSize,
REGISTER_TIMER_INFO
(
"RecurrentFwBatch"
,
getName
().
c_str
());
/* forward one batch */
for
(
size_t
n
=
0
;
n
<
batchValue_
->
getNumBatch
();
n
++
)
{
MatrixPtr
batch
2
=
batchValue_
->
getBatchValue
(
n
);
MatrixPtr
batch
Value
=
batchValue_
->
getBatchValue
(
n
);
if
(
n
!=
0
)
{
MatrixPtr
batch1
=
batchValue_
->
getBatchValue
(
n
-
1
,
batch
2
->
getHeight
());
MatrixPtr
preBatchValue
=
batchValue_
->
getBatchValue
(
n
-
1
,
batch
Value
->
getHeight
());
// batch2->mul(*batch1, *weight_->getW(), 1, 1);
packed_weight_
->
compute
(
batch2
,
batch1
);
}
#pragma omp parallel for collapse(2)
for
(
size_t
i
=
0
;
i
<
batch2
->
getHeight
();
i
++
)
{
for
(
size_t
j
=
0
;
j
<
batch2
->
getWidth
();
j
++
)
{
*
(
batch2
->
getData
()
+
i
*
batch2
->
getWidth
()
+
j
)
=
*
(
batch2
->
getData
()
+
i
*
batch2
->
getWidth
()
+
j
)
>
0
?
*
(
batch2
->
getData
()
+
i
*
batch2
->
getWidth
()
+
j
)
:
0
;
}
packed_weight_
->
compute
(
batchValue
,
preBatchValue
);
}
Argument
arg
;
arg
.
value
=
batchValue
;
activation_
->
forward
(
arg
).
check
();
}
}
batchValue_
->
copyBackSeq
(
*
output_
.
value
);
}
...
...
@@ -94,25 +85,27 @@ void MKLPackedRecurrentLayer::backwardBatch(int batchSize,
REGISTER_TIMER_INFO
(
"RecurrentBwData"
,
getName
().
c_str
());
/* backward one batch */
for
(
int
n
=
(
int
)
numBatch
-
1
;
n
>=
0
;
n
--
)
{
MatrixPtr
batch2
=
batchGrad_
->
getBatchValue
(
n
);
MatrixPtr
batch1
=
batchValue_
->
getBatchValue
(
n
,
batch2
->
getHeight
());
MatrixPtr
batchGrad
=
batchGrad_
->
getBatchValue
(
n
);
MatrixPtr
batchValue
=
batchValue_
->
getBatchValue
(
n
,
batchGrad
->
getHeight
());
Argument
arg
;
arg
.
value
=
batch
1
;
arg
.
grad
=
batch
2
;
arg
.
value
=
batch
Value
;
arg
.
grad
=
batch
Grad
;
activation_
->
backward
(
arg
).
check
();
if
(
n
!=
0
)
{
batch1
=
batchGrad_
->
getBatchValue
(
n
-
1
,
batch2
->
getHeight
());
// batch1->mul(*batch2, *weightT, 1, 1);
packed_weightT_
->
compute
(
batch1
,
batch2
);
batchValue
=
batchGrad_
->
getBatchValue
(
n
-
1
,
batchGrad
->
getHeight
());
packed_weightT_
->
compute
(
batchValue
,
batchGrad
);
}
if
(
backwardByBatch
&&
weight_
->
getWGrad
())
{
if
(
n
!=
0
)
{
/* backward weight */
batch1
=
batchValue_
->
getBatchValue
(
n
-
1
,
batch2
->
getHeight
());
weight_
->
getWGrad
()
->
mul
(
*
batch1
->
getTranspose
(),
*
batch2
,
1
,
1
);
batchValue
=
batchValue_
->
getBatchValue
(
n
-
1
,
batchGrad
->
getHeight
());
weight_
->
getWGrad
()
->
mul
(
*
batchValue
->
getTranspose
(),
*
batchGrad
,
1
,
1
);
}
}
}
...
...
@@ -124,19 +117,14 @@ void MKLPackedRecurrentLayer::backwardBatch(int batchSize,
REGISTER_TIMER_INFO
(
"RecurrentBwWeight"
,
getName
().
c_str
());
for
(
size_t
seq
=
0
;
seq
<
numSequences
;
++
seq
)
{
int
len
=
starts
[
seq
+
1
]
-
starts
[
seq
];
if
(
!
reversed_
)
{
weight_
->
getWGrad
()
->
mul
(
*
output_
.
value
->
subMatrix
(
starts
[
seq
],
len
-
1
)
->
getTranspose
(),
*
output_
.
grad
->
subMatrix
(
starts
[
seq
]
+
1
,
len
-
1
),
1
,
1
);
}
else
{
weight_
->
getWGrad
()
->
mul
(
*
output_
.
value
->
subMatrix
(
starts
[
seq
]
+
1
,
len
-
1
)
->
getTranspose
(),
*
output_
.
grad
->
subMatrix
(
starts
[
seq
],
len
-
1
),
1
,
1
);
}
weight_
->
getWGrad
()
->
mul
(
*
output_
.
value
->
subMatrix
(
reversed_
?
starts
[
seq
]
+
1
:
starts
[
seq
],
len
-
1
)
->
getTranspose
(),
*
output_
.
grad
->
subMatrix
(
reversed_
?
starts
[
seq
]
:
starts
[
seq
]
+
1
,
len
-
1
),
1
,
1
);
}
}
}
...
...
paddle/gserver/layers/MKLPackedRecurrentLayer.h
浏览文件 @
df2b054b
...
...
@@ -14,36 +14,18 @@ limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include "Layer.h"
#include "MKLPackedWeight.h"
#include "RecurrentLayer.h"
#include "SequenceToBatch.h"
#include "paddle/utils/Stat.h"
DECLARE_bool
(
rnn_use_batch
);
namespace
paddle
{
/**
* @brief MKLPackedRecurrentLayer takes 1 input layer. The output size is the
* same with
* input layer.
* For each sequence [start, end] it performs the following computation:
* \f[
* out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\
* out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end
*
* \f]
* If reversed is true, the order is reversed:
* \f[
* out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\
* out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end
* \f]
* There are two methods to calculate rnn. One way is to compute rnn one
* sequence by one sequence. The other way is to reorganize the input
* into batches, then compute rnn one batch by one batch. Users can select
* them by rnn_use_batch flag.
* @brief MKLPackedRecurrentLayer is same with RecurrentLayer but is optimized
* with MKL cblas packed gemm.
* More details:
* https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/mkl/mkl_packed.md
*/
class
MKLPackedRecurrentLayer
:
public
RecurrentLayer
{
...
...
@@ -66,7 +48,10 @@ protected:
const
int
*
starts
)
override
;
protected:
/// packed_weight_ is contains same data with
/// RecurrentLayer::weight_ but is packed
std
::
unique_ptr
<
MKLPackedWeight
>
packed_weight_
;
/// packed_weightT_ is the transposition matrix of packed_weight_
std
::
unique_ptr
<
MKLPackedWeight
>
packed_weightT_
;
};
...
...
paddle/gserver/layers/MKLPackedWeight.h
浏览文件 @
df2b054b
...
...
@@ -22,7 +22,9 @@ namespace paddle {
class
MKLPackedWeight
{
protected:
/// The pointor of weight
real
*
weight_
;
/// The pointor of cblas packed gemm to weight
real
*
packedWeight_
;
size_t
height_
;
size_t
width_
;
...
...
@@ -41,7 +43,7 @@ public:
void
pack
()
{
pack_
(
weight_
);
}
void
compute
(
MatrixPtr
dst
,
MatrixPtr
src
)
{
void
compute
(
MatrixPtr
dst
,
const
MatrixPtr
src
)
{
cblas_sgemm_compute
(
CblasRowMajor
,
CblasNoTrans
,
CblasPacked
,
...
...
@@ -57,22 +59,6 @@ public:
dst
->
getWidth
());
}
void
compute
(
size_t
M
,
real
*
A
,
size_t
lda
,
real
*
C
,
size_t
ldc
)
{
cblas_sgemm_compute
(
CblasRowMajor
,
CblasNoTrans
,
CblasPacked
,
M
,
width_
,
height_
,
A
,
lda
,
packedWeight_
,
width_
,
1.0
,
C
,
ldc
);
}
protected:
void
pack_
(
real
*
src
)
{
if
(
!
packedWeight_
)
{
...
...
paddle/gserver/layers/RecurrentLayer.cpp
浏览文件 @
df2b054b
...
...
@@ -13,10 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "RecurrentLayer.h"
#include <gflags/gflags.h>
#include "Layer.h"
#include "SequenceToBatch.h"
#include "paddle/utils/Stat.h"
DEFINE_bool
(
rnn_use_batch
,
false
,
"Using the batch method for calculation."
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录