未验证 提交 defba316 编写于 作者: K Kaipeng Deng 提交者: GitHub

[cherry pick] add changelog (#3934)

* add changelog
上级 b30bd30f
......@@ -263,6 +263,8 @@ PaddleDetection模块化地实现了多种主流目标检测算法,提供了
## 版本更新
v2.2版本已经在`08/2021`发布,全新发布Transformer检测系列模型,新增关键点检测Dark HRNet模型,新增人头、车辆跟踪垂类模型,发布旋转框检测S2ANet优化模型,主流模型支持batch size > 1预测部署,详细内容请参考[版本更新文档](docs/CHANGELOG.md)
v2.1版本已经在`05/2021`发布,全新发布关键点检测和多目标跟踪能力,支持无标注框检测,发布PPYOLO系列模型压缩模型,新增ONNX模型导出教程,详细内容请参考[版本更新文档](docs/CHANGELOG.md)
v2.0版本已经在`04/2021`发布,全面支持动态图版本,新增支持BlazeFace, PSSDet等系列模型和大量骨干网络,发布PP-YOLO v2, PP-YOLO tiny和旋转框检测S2ANet模型。支持模型蒸馏、VisualDL,新增动态图预测部署benchmark,详细内容请参考[版本更新文档](docs/CHANGELOG.md)
......
......@@ -269,6 +269,8 @@ The relationship between COCO mAP and FPS on Tesla V100 of representative models
## Updates
v2.2 was released at `08/2021`, release Transformer detection models, release Dark HRNet keypoint detection model, release tracking models of head and vehicle, release optimized S2ANet model, inference with batch size > 1 supported for main architectures. Please refer to [change log](docs/CHANGELOG.md) for details.
v2.1 was released at `05/2021`, Release Keypoint Detection and Multi-Object Tracking. Release model compression for PPYOLO series. Update documents such as export ONNX model. Please refer to [change log](docs/CHANGELOG.md) for details.
v2.0 was released at `04/2021`, fully support dygraph version, which add BlazeFace, PSS-Det and plenty backbones, release `PP-YOLOv2`, `PP-YOLO tiny` and `S2ANet`, support model distillation and VisualDL, add inference benchmark, etc. Please refer to [change log](docs/CHANGELOG.md) for details.
......
......@@ -2,6 +2,32 @@
## 最新版本信息
### 2.2(08.10/2021)
- 模型丰富度:
- 发布Transformer检测模型:DETR、Deformable DETR、Sparse RCNN
- 关键点检测新增Dark模型,发布Dark HRNet模型
- 发布MPII数据集HRNet关键点检测模型
- 发布人头、车辆跟踪垂类模型
- 模型优化:
- 旋转框检测模型S2ANet发布Align Conv优化模型,DOTA数据集mAP优化至74.0
- 预测部署
- 主流模型支持batch size>1预测部署,包含YOLOv3,PP-YOLO,Faster RCNN,SSD,TTFNet,FCOS
- 新增多目标跟踪模型(JDE, FairMot, DeepSort) Python端预测部署支持,并支持TensorRT预测
- 新增多目标跟踪模型FairMot联合关键点检测模型部署Python端预测部署支持
- 新增关键点检测模型联合PP-YOLO预测部署支持
- 文档:
- Windows预测部署文档新增TensorRT版本说明
- FAQ文档更新发布
- 问题修复:
- 修复PP-YOLO系列模型训练收敛性问题
- 修复batch size>1时无标签数据训练问题
### 2.1(05.20/2021)
- 模型丰富度提升:
- 发布关键点模型HRNet,HigherHRNet
......
......@@ -19,10 +19,10 @@ import shutil
import subprocess
from setuptools import find_packages, setup
# ============== version definition ==============
PPDET_VERSION = "2.1.0"
PPDET_VERSION = "2.2.0"
def parse_version():
return PPDET_VERSION.replace('-', '')
......@@ -31,8 +31,9 @@ def parse_version():
def git_commit():
try:
cmd = ['git', 'rev-parse', 'HEAD']
git_commit = subprocess.Popen(cmd, stdout = subprocess.PIPE,
).communicate()[0].strip()
git_commit = subprocess.Popen(
cmd,
stdout=subprocess.PIPE, ).communicate()[0].strip()
git_commit = git_commit.decode()
except:
git_commit = 'Unknown'
......@@ -49,9 +50,8 @@ commit = '%(commit)s'
_git_commit = git_commit()
with open(filename, 'w') as f:
f.write(ver_str % {
'version': PPDET_VERSION,
'commit': _git_commit})
f.write(ver_str % {'version': PPDET_VERSION, 'commit': _git_commit})
write_version_py()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册