Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
db8566d7
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
db8566d7
编写于
2月 27, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'feature/clean_mnist_v2' into feature/tester
上级
9663d40e
cbcd53af
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
549 addition
and
115 deletion
+549
-115
.travis.yml
.travis.yml
+1
-1
doc/api/trainer_config_helpers/layers.rst
doc/api/trainer_config_helpers/layers.rst
+24
-12
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+94
-19
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+2
-1
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+199
-74
python/paddle/v2/pooling.py
python/paddle/v2/pooling.py
+24
-0
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+203
-7
python/setup.py.in
python/setup.py.in
+2
-1
未找到文件。
.travis.yml
浏览文件 @
db8566d7
...
...
@@ -57,7 +57,7 @@ before_install:
-
if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
-
pip install numpy wheel 'protobuf==3.1' sphinx recommonmark sphinx_rtd_theme virtualenv pre-commit requests==2.9.2 LinkChecker 'scikit-learn>=0.18.0'
-
pip install numpy wheel 'protobuf==3.1' sphinx recommonmark sphinx_rtd_theme virtualenv pre-commit requests==2.9.2 LinkChecker 'scikit-learn>=0.18.0'
'scipy>=0.18.0'
script
:
-
paddle/scripts/travis/main.sh
notifications
:
...
...
doc/api/trainer_config_helpers/layers.rst
浏览文件 @
db8566d7
...
...
@@ -139,24 +139,12 @@ lstmemory
:members: lstmemory
:noindex:
lstm_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: lstm_step_layer
:noindex:
grumemory
---------
.. automodule:: paddle.trainer_config_helpers.layers
:members: grumemory
:noindex:
gru_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: gru_step_layer
:noindex:
Recurrent Layer Group
=====================
...
...
@@ -172,6 +160,18 @@ recurrent_group
:members: recurrent_group
:noindex:
lstm_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: lstm_step_layer
:noindex:
gru_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: gru_step_layer
:noindex:
beam_search
------------
.. automodule:: paddle.trainer_config_helpers.layers
...
...
@@ -308,6 +308,12 @@ repeat_layer
:members: repeat_layer
:noindex:
rotate_layer
------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: rotate_layer
:noindex:
seq_reshape_layer
-----------------
.. automodule:: paddle.trainer_config_helpers.layers
...
...
@@ -462,6 +468,12 @@ ctc_layer
:members: ctc_layer
:noindex:
warp_ctc_layer
--------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: warp_ctc_layer
:noindex:
nce_layer
-----------
.. automodule:: paddle.trainer_config_helpers.layers
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
db8566d7
...
...
@@ -112,6 +112,8 @@ __all__ = [
'priorbox_layer'
,
'spp_layer'
,
'pad_layer'
,
'eos_layer'
,
'layer_support'
,
]
...
...
@@ -708,6 +710,7 @@ class MixedLayerType(LayerOutput):
# update the size which might be computed inside MixedLayer
# according to the operator's output size
self
.
size
=
ml
.
config
.
size
self
.
finalized
=
True
@
wrap_name_default
(
"mixed"
)
...
...
@@ -1287,6 +1290,12 @@ def last_seq(input,
"""
Get Last Timestamp Activation of a sequence.
The simple usage is:
.. code-block:: python
seq = last_seq(input=layer)
:param agg_level: Aggregated level
:param name: Layer name.
:type name: basestring
...
...
@@ -1325,6 +1334,12 @@ def first_seq(input,
"""
Get First Timestamp Activation of a sequence.
The simple usage is:
.. code-block:: python
seq = first_seq(input=layer)
:param agg_level: aggregation level
:param name: Layer name.
:type name: basestring
...
...
@@ -1425,7 +1440,7 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None):
.. code-block:: python
expand = repeat_layer(
layer,
4)
expand = repeat_layer(
input=layer, num_repeats=
4)
:param input: Input layer
:type input: LayerOutput
...
...
@@ -1797,6 +1812,12 @@ def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Note that the above computation is for one sample. Multiple samples are
processed in one batch.
The example usage is:
.. code-block:: python
cos = cos_sim(a=layer1, b=layer2, size=3)
:param name: layer name
:type name: basestring
:param a: input layer a
...
...
@@ -1958,6 +1979,16 @@ def img_conv_layer(input,
pieces. First 256/4 = 64 channels will process by first 32 filters. The
rest channels will be processed by rest group of filters.
The example usage is:
.. code-block:: python
conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
:param name: Layer name.
:type name: basestring
:param input: Layer Input.
...
...
@@ -2097,6 +2128,34 @@ def img_pool_layer(input,
.. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
The example usage is:
.. code-block:: python
maxpool = img_pool_layer(input=conv,
pool_size=3,
pool_size_y=5,
num_channels=8,
stride=1,
stride_y=2,
padding=1,
padding_y=2,
pool_type=MaxPooling())
:param padding: pooling padding width.
:type padding: int
:param padding_y: pooling padding height. It's equal to padding by default.
...
...
@@ -2123,19 +2182,6 @@ def img_pool_layer(input,
:param ceil_mode: Wether to use ceil mode to calculate output height and with.
Defalut is True. If set false, Otherwise use floor.
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input_width + 2 * padding - pool_size) / float(stride))
h = 1 + int(ceil(input_height + 2 * padding_y - pool_size_y) / float(stride_y))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input_width + 2 * padding - pool_size) / float(stride))
h = 1 + int(floor(input_height + 2 * padding_y - pool_size_y) / float(stride_y))
:type ceil_mode: bool
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -2197,6 +2243,15 @@ def spp_layer(input,
The details please refer to
`Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.
The example usage is:
.. code-block:: python
spp = spp_layer(input=data,
pyramid_height=2,
num_channels=16,
pool_type=MaxPooling())
:param name: layer name.
:type name: basestring
:param input: layer's input.
...
...
@@ -2285,6 +2340,12 @@ def img_cmrnorm_layer(input,
The details please refer to
`Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
The example usage is:
.. code-block:: python
norm = img_cmrnorm_layer(input=net, size=5)
:param name: layer name.
:type name: None|basestring
:param input: layer's input.
...
...
@@ -2340,6 +2401,12 @@ def batch_norm_layer(input,
The details of batch normalization please refer to this
`paper <http://arxiv.org/abs/1502.03167>`_.
The example usage is:
.. code-block:: python
norm = batch_norm_layer(input=net, act=ReluActivation())
:param name: layer name.
:type name: basestring
:param input: batch normalization input. Better be linear activation.
...
...
@@ -3903,13 +3970,13 @@ def conv_shift_layer(a, b, name=None, layer_attr=None):
.. code-block:: python
conv_shift = conv_shift_layer(
input=[layer1, layer2]
)
conv_shift = conv_shift_layer(
a=layer1, b=layer2
)
:param name: layer name
:type name: basestring
:param a: Input layer a.
:type a: LayerOutput
:param b: input layer b
:param b: input layer b
.
:type b: LayerOutput
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
...
...
@@ -4001,8 +4068,8 @@ def tensor_layer(a,
@
wrap_act_default
()
@
layer_support
()
def
selective_fc_layer
(
input
,
select
,
size
,
select
=
None
,
act
=
None
,
name
=
None
,
pass_generation
=
False
,
...
...
@@ -4029,6 +4096,7 @@ def selective_fc_layer(input,
:type input: LayerOutput|list|tuple
:param select: The select layer. The output of select layer should be a
sparse binary matrix, and treat as the mask of selective fc.
If is None, acts exactly like fc_layer.
:type select: LayerOutput
:param size: The layer dimension.
:type size: int
...
...
@@ -4257,7 +4325,7 @@ def block_expand_layer(input,
.. code-block:: python
block_expand = block_expand_layer(input,
block_expand = block_expand_layer(input
=layer
,
num_channels=128,
stride_x=1,
stride_y=1,
...
...
@@ -4461,7 +4529,7 @@ def warp_ctc_layer(input,
- You can set 'blank' to any value ranged in [0, num_classes], which
should be consistent as that used in your labels.
- As a native 'softmax' activation is interated to the warp-ctc library,
'linear' activation is expected instead in the 'input' layer.
'linear' activation is expected instead in the 'input' layer.
The simple usage:
...
...
@@ -4594,6 +4662,13 @@ def crf_decoding_layer(input,
this layer will also calculate error. output.value[i] is 1 for incorrect
decoding or 0 for correct decoding.
The simple usage:
.. code-block:: python
crf_decoding = crf_decoding_layer(input=input,
size=label_dim)
:param input: The first input layer.
:type input: LayerOutput
:param size: size of this layer.
...
...
python/paddle/v2/__init__.py
浏览文件 @
db8566d7
...
...
@@ -22,11 +22,12 @@ import data_feeder
from
.
import
dataset
from
.
import
reader
import
attr
import
pooling
import
py_paddle.swig_paddle
as
api
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_type'
,
'attr'
,
'data_feeder'
,
'dataset'
,
'reader'
'event'
,
'data_type'
,
'attr'
,
'
pooling'
,
'
data_feeder'
,
'dataset'
,
'reader'
]
...
...
python/paddle/v2/layer.py
浏览文件 @
db8566d7
...
...
@@ -71,19 +71,37 @@ import collections
import
paddle.trainer_config_helpers
as
conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_act_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_bias_attr_default
from
paddle.trainer_config_helpers.layers
import
layer_support
import
data_type
import
activation
import
attr
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'parse_network'
,
'data'
,
'fc'
,
'conv_shift'
,
'img_conv'
,
'img_pool'
,
'spp'
,
'maxout'
,
'img_cmrnorm'
,
'batch_norm'
,
'sum_to_one_norm'
,
'recurrent'
,
'lstmemory'
,
'grumemory'
,
'pool'
,
'last_seq'
,
'first_seq'
,
'concat'
,
'seq_concat'
,
'block_expand'
,
'expand'
,
'repeat'
,
'seq_reshape'
,
'addto'
,
'linear_comb'
,
'interpolation'
,
'bilinear_interp'
,
'power'
,
'scaling'
,
'slope_intercept'
,
'tensor'
,
'cos_sim'
,
'trans'
,
'max_id'
,
'sampling_id'
,
'pad'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
'sum_cost'
,
'huber_cost'
,
'crf'
,
'crf_decoding'
,
'ctc'
,
'warp_ctc'
,
'nce'
,
'hsigmoid'
,
'eos'
]
__projection_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_projection'
),
dir
(
conf_helps
))
__all__
+=
__projection_names__
__operator_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_operator'
),
dir
(
conf_helps
))
__all__
+=
__operator_names__
def
parse_network
(
*
outputs
):
"""
...
...
@@ -101,9 +119,8 @@ def parse_network(*outputs):
class
Layer
(
object
):
def
__init__
(
self
,
name
,
parent_layers
):
def
__init__
(
self
,
name
=
None
,
parent_layers
=
None
):
assert
isinstance
(
parent_layers
,
dict
)
assert
isinstance
(
name
,
basestring
)
self
.
name
=
name
self
.
__parent_layers__
=
parent_layers
...
...
@@ -122,22 +139,25 @@ class Layer(object):
self
.
__parent_layers__
[
layer_name
])
kwargs
[
layer_name
]
=
v1_layer
if
self
.
name
not
in
context
:
if
self
.
name
is
None
:
return
self
.
to_proto_impl
(
**
kwargs
)
elif
self
.
name
not
in
context
:
context
[
self
.
name
]
=
self
.
to_proto_impl
(
**
kwargs
)
return
context
[
self
.
name
]
def
to_proto_impl
(
self
,
**
kwargs
):
raise
NotImplementedError
()
def
__convert_to_v2__
(
method_name
,
name_prefix
,
parent_names
):
if
name_prefix
is
not
Non
e
:
wrapper
=
wrap_name_default
(
name_prefix
=
name_prefix
)
def
__convert_to_v2__
(
method_name
,
parent_names
,
is_default_name
=
True
):
if
is_default_nam
e
:
wrapper
=
wrap_name_default
(
name_prefix
=
method_name
)
else
:
wrapper
=
None
class
V2LayerImpl
(
Layer
):
def
__init__
(
self
,
name
=
None
,
**
kwargs
):
def
__init__
(
self
,
**
kwargs
):
parent_layers
=
dict
()
other_kwargs
=
dict
()
for
pname
in
parent_names
:
...
...
@@ -148,6 +168,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
if
key
not
in
parent_names
:
other_kwargs
[
key
]
=
kwargs
[
key
]
name
=
kwargs
.
get
(
'name'
,
None
)
super
(
V2LayerImpl
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
...
...
@@ -160,7 +181,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
method_name
)(
name
=
self
.
name
,
**
args
)
return
getattr
(
conf_helps
,
method_name
)(
**
args
)
return
V2LayerImpl
...
...
@@ -191,67 +212,171 @@ class DataLayerV2(Layer):
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
name
=
self
.
name
,
**
args
)
class
MixedLayerV2
(
Layer
):
"""
This class is use to support `with` grammar. If not, the following code
could convert mixed_layer simply.
mixed = __convert_to_v2__(
'mixed_layer', name_prefix='mixed', parent_names=['input'])
"""
class
AddToSealedMixedLayerExceptionV2
(
Exception
):
pass
def
__init__
(
self
,
size
=
0
,
input
=
None
,
name
=
None
,
act
=
None
,
bias_attr
=
None
,
layer_attr
=
None
):
self
.
__method_name__
=
'mixed_layer'
self
.
finalized
=
False
self
.
__inputs__
=
[]
if
input
is
not
None
:
self
.
__inputs__
=
input
other_kwargs
=
dict
()
other_kwargs
[
'name'
]
=
name
other_kwargs
[
'size'
]
=
size
other_kwargs
[
'act'
]
=
act
other_kwargs
[
'bias_attr'
]
=
bias_attr
other_kwargs
[
'layer_attr'
]
=
layer_attr
parent_layers
=
{
"input"
:
self
.
__inputs__
}
super
(
MixedLayerV2
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
def
__iadd__
(
self
,
other
):
if
not
self
.
finalized
:
self
.
__inputs__
.
append
(
other
)
return
self
else
:
raise
MixedLayerTypeV2
.
AddToSealedMixedLayerExceptionV2
()
def
__enter__
(
self
):
assert
len
(
self
.
__inputs__
)
==
0
return
self
def
__exit__
(
self
,
*
args
,
**
kwargs
):
self
.
finalized
=
True
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
**
args
)
@
wrap_name_default
(
"mixed"
)
@
wrap_act_default
(
act
=
activation
.
Linear
())
@
wrap_bias_attr_default
(
has_bias
=
False
)
@
layer_support
(
conf_helps
.
layers
.
ERROR_CLIPPING
,
conf_helps
.
layers
.
DROPOUT
)
def
mixed
(
size
=
0
,
name
=
None
,
input
=
None
,
act
=
None
,
bias_attr
=
False
,
layer_attr
=
None
):
return
MixedLayerV2
(
size
,
input
,
name
,
act
,
bias_attr
,
layer_attr
)
data
=
DataLayerV2
fc
=
__convert_to_v2__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
max_id
=
__convert_to_v2__
(
'maxid_layer'
,
name_prefix
=
'maxid'
,
parent_names
=
[
'input'
])
classification_cost
=
__convert_to_v2__
(
'classification_cost'
,
name_prefix
=
'classification_cost'
,
parent_names
=
[
'input'
,
'label'
,
'weight'
])
regression_cost
=
__convert_to_v2__
(
'regression_cost'
,
name_prefix
=
'regression_cost'
,
parent_names
=
[
'input'
,
'label'
,
'weight'
])
cross_entropy_cost
=
__convert_to_v2__
(
'cross_entropy'
,
name_prefix
=
'cross_entropy'
,
parent_names
=
[
'input'
,
'label'
])
cross_entropy_with_selfnorm_cost
=
__convert_to_v2__
(
'cross_entropy_with_selfnorm'
,
name_prefix
=
'cross_entropy_with_selfnorm'
,
parent_names
=
[
'input'
,
'label'
])
multi_binary_label_cross_entropy_cost
=
__convert_to_v2__
(
'multi_binary_label_cross_entropy'
,
name_prefix
=
'multi_binary_label_cross_entropy'
,
parent_names
=
[
'input'
,
'label'
])
rank_cost
=
__convert_to_v2__
(
'rank_cost'
,
name_prefix
=
'rank_cost'
,
parent_names
=
[
'left'
,
'right'
,
'label'
,
'weight'
])
lambda_cost
=
__convert_to_v2__
(
'lambda_cost'
,
name_prefix
=
'lambda_cost'
,
parent_names
=
[
'input'
,
'score'
])
sum_cost
=
__convert_to_v2__
(
'sum_cost'
,
name_prefix
=
'sum_cost'
,
parent_names
=
[
'input'
])
huber_cost
=
__convert_to_v2__
(
'huber_cost'
,
name_prefix
=
'huber_cost'
,
parent_names
=
[
'input'
,
'label'
])
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
activation
.
Sigmoid
(),
param_attr
=
attr
.
Param
(
name
=
'hidden'
))
inference
=
fc
(
input
=
hidden
,
size
=
10
,
act
=
activation
.
Softmax
())
maxid
=
max_id
(
input
=
inference
)
cost1
=
classification_cost
(
input
=
inference
,
label
=
label
)
cost2
=
classification_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost3
=
cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost4
=
cross_entropy_with_selfnorm_cost
(
input
=
inference
,
label
=
label
)
cost5
=
regression_cost
(
input
=
inference
,
label
=
label
)
cost6
=
regression_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost7
=
multi_binary_label_cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost8
=
rank_cost
(
left
=
score
,
right
=
score
,
label
=
score
)
cost9
=
lambda_cost
(
input
=
inference
,
score
=
score
)
cost10
=
sum_cost
(
input
=
inference
)
cost11
=
huber_cost
(
input
=
score
,
label
=
label
)
print
parse_network
(
cost1
,
cost2
)
print
parse_network
(
cost3
,
cost4
)
print
parse_network
(
cost5
,
cost6
)
print
parse_network
(
cost7
,
cost8
,
cost9
,
cost10
,
cost11
)
print
parse_network
(
inference
,
maxid
)
AggregateLevel
=
conf_helps
.
layers
.
AggregateLevel
ExpandLevel
=
conf_helps
.
layers
.
ExpandLevel
layer_list
=
[
# [V2LayerImpl, V1_method_name, parent_names]
# fully connected layers
[
'fc'
,
'fc_layer'
,
[
'input'
]],
# conv layers
[
'conv_shift'
,
'conv_shift_layer'
,
[
'a'
,
'b'
]],
[
'img_conv'
,
'img_conv_layer'
,
[
'input'
]],
# image pooling layers
[
'img_pool'
,
'img_pool_layer'
,
[
'input'
]],
[
'spp'
,
'spp_layer'
,
[
'input'
]],
[
'maxout'
,
'maxout_layer'
,
[
'input'
]],
# norm layers
[
'img_cmrnorm'
,
'img_cmrnorm_layer'
,
[
'input'
]],
[
'batch_norm'
,
'batch_norm_layer'
,
[
'input'
]],
[
'sum_to_one_norm'
,
'sum_to_one_norm_layer'
,
[
'input'
]],
# recurrent layers
[
'recurrent'
,
'recurrent_layer'
,
[
'input'
]],
[
'lstmemory'
,
'lstmemory'
,
[
'input'
]],
[
'grumemory'
,
'grumemory'
,
[
'input'
]],
# aggregate layers
[
'pool'
,
'pooling_layer'
,
[
'input'
]],
[
'last_seq'
,
'last_seq'
,
[
'input'
]],
[
'first_seq'
,
'first_seq'
,
[
'input'
]],
[
'concat'
,
'concat_layer'
,
[
'input'
]],
[
'seq_concat'
,
'seq_concat_layer'
,
[
'a'
,
'b'
]],
# reshaping layers
[
'block_expand'
,
'block_expand_layer'
,
[
'input'
]],
[
'expand'
,
'expand_layer'
,
[
'input'
,
'expand_as'
]],
[
'repeat'
,
'repeat_layer'
,
[
'input'
]],
[
'rotate'
,
'rotate_layer'
,
[
'input'
]],
[
'seq_reshape'
,
'seq_reshape_layer'
,
[
'input'
]],
# math layers
[
'addto'
,
'addto_layer'
,
[
'input'
]],
[
'linear_comb'
,
'linear_comb_layer'
,
[
'weights'
,
'vectors'
]],
[
'interpolation'
,
'interpolation_layer'
,
[
'input'
,
'weight'
]],
[
'bilinear_interp'
,
'bilinear_interp_layer'
,
[
'input'
]],
[
'power'
,
'power_layer'
,
[
'input'
,
'weight'
]],
[
'scaling'
,
'scaling_layer'
,
[
'input'
,
'weight'
]],
[
'slope_intercept'
,
'slope_intercept_layer'
,
[
'input'
]],
[
'tensor'
,
'tensor_layer'
,
[
'a'
,
'b'
]],
[
'cos_sim'
,
'cos_sim'
,
[
'a'
,
'b'
]],
[
'trans'
,
'trans_layer'
,
[
'input'
]],
# sampling layers
[
'max_id'
,
'maxid_layer'
,
[
'input'
]],
[
'sampling_id'
,
'sampling_id_layer'
,
[
'input'
]],
# slicing and joining layers
[
'pad'
,
'pad_layer'
,
[
'input'
]],
# cost layers
[
'classification_cost'
,
'classification_cost'
,
[
'input'
,
'label'
,
'weight'
]
],
[
'regression_cost'
,
'regression_cost'
,
[
'input'
,
'label'
,
'weight'
]],
[
'cross_entropy_cost'
,
'cross_entropy'
,
[
'input'
,
'label'
]],
[
'cross_entropy_with_selfnorm_cost'
,
'cross_entropy_with_selfnorm'
,
[
'input'
,
'label'
]
],
[
'multi_binary_label_cross_entropy_cost'
,
'multi_binary_label_cross_entropy'
,
[
'input'
,
'label'
]
],
[
'rank_cost'
,
'rank_cost'
,
[
'left'
,
'right'
,
'label'
,
'weight'
]],
[
'lambda_cost'
,
'lambda_cost'
,
[
'input'
,
'score'
]],
[
'sum_cost'
,
'sum_cost'
,
[
'input'
]],
[
'huber_cost'
,
'huber_cost'
,
[
'input'
,
'label'
]],
[
'crf'
,
'crf_layer'
,
[
'input'
,
'label'
]],
[
'crf_decoding'
,
'crf_decoding_layer'
,
[
'input'
]],
[
'ctc'
,
'ctc_layer'
,
[
'input'
,
'label'
]],
[
'warp_ctc'
,
'warp_ctc_layer'
,
[
'input'
,
'label'
]],
[
'nce'
,
'nce_layer'
,
[
'input'
,
'label'
]],
[
'hsigmoid'
,
'hsigmoid'
,
[
'input'
,
'label'
]],
# check layers
[
'eos'
,
'eos_layer'
,
[
'input'
]]
]
for
l
in
layer_list
:
globals
()[
l
[
0
]]
=
__convert_to_v2__
(
l
[
1
],
l
[
2
])
# convert projection
for
prj
in
__projection_names__
:
globals
()[
prj
]
=
__convert_to_v2__
(
prj
,
parent_names
=
[
'input'
],
is_default_name
=
False
)
# convert operator
operator_list
=
[
# [V1_method_name, parent_names],
[
'dotmul_operator'
,
[
'a'
,
'b'
]],
[
'conv_operator'
,
[
'img'
,
'filter'
]]
]
for
op
in
operator_list
:
globals
()[
op
[
0
]]
=
__convert_to_v2__
(
op
[
0
],
parent_names
=
op
[
1
],
is_default_name
=
False
)
python/paddle/v2/pooling.py
0 → 100644
浏览文件 @
db8566d7
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers.poolings
import
*
__all__
=
[
"Max"
,
"CudnnMax"
,
"Avg"
,
"CudnnAvg"
,
"Sum"
,
"SquareRootN"
]
Max
=
MaxPooling
CudnnMax
=
CudnnMaxPooling
Avg
=
AvgPooling
CudnnAvg
=
CudnnAvgPooling
Sum
=
SumPooling
SquareRootN
=
SquareRootNPooling
python/paddle/v2/tests/test_layer.py
浏览文件 @
db8566d7
...
...
@@ -19,18 +19,106 @@ import paddle.v2.activation as activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
import
paddle.v2.pooling
as
pooling
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
128
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
layer
.
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
layer
.
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
hidden
=
layer
.
fc
(
input
=
pixel
,
size
=
100
,
act
=
activation
.
Sigmoid
(),
param_attr
=
attr
.
Param
(
name
=
'hidden'
))
inference
=
layer
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
activation
.
Softmax
())
conv
=
layer
.
img_conv
(
input
=
pixel
,
filter_size
=
1
,
filter_size_y
=
1
,
num_channels
=
8
,
num_filters
=
16
,
act
=
activation
.
Linear
())
class
ImageLayerTest
(
unittest
.
TestCase
):
def
test_conv_layer
(
self
):
conv_shift
=
layer
.
conv_shift
(
a
=
pixel
,
b
=
score
)
print
layer
.
parse_network
(
conv
,
conv_shift
)
def
test_pooling_layer
(
self
):
maxpool
=
layer
.
img_pool
(
input
=
conv
,
pool_size
=
2
,
num_channels
=
16
,
padding
=
1
,
pool_type
=
pooling
.
Max
())
spp
=
layer
.
spp
(
input
=
conv
,
pyramid_height
=
2
,
num_channels
=
16
,
pool_type
=
pooling
.
Max
())
maxout
=
layer
.
maxout
(
input
=
conv
,
num_channels
=
16
,
groups
=
4
)
print
layer
.
parse_network
(
maxpool
,
spp
,
maxout
)
def
test_norm_layer
(
self
):
norm1
=
layer
.
img_cmrnorm
(
input
=
conv
,
size
=
5
)
norm2
=
layer
.
batch_norm
(
input
=
conv
)
norm3
=
layer
.
sum_to_one_norm
(
input
=
conv
)
print
layer
.
parse_network
(
norm1
,
norm2
,
norm3
)
class
AggregateLayerTest
(
unittest
.
TestCase
):
def
test_aggregate_layer
(
self
):
pool
=
layer
.
pool
(
input
=
pixel
,
pooling_type
=
pooling
.
Avg
(),
agg_level
=
layer
.
AggregateLevel
.
EACH_SEQUENCE
)
last_seq
=
layer
.
last_seq
(
input
=
pixel
)
first_seq
=
layer
.
first_seq
(
input
=
pixel
)
concat
=
layer
.
concat
(
input
=
[
last_seq
,
first_seq
])
seq_concat
=
layer
.
seq_concat
(
a
=
last_seq
,
b
=
first_seq
)
print
layer
.
parse_network
(
pool
,
last_seq
,
first_seq
,
concat
,
seq_concat
)
class
MathLayerTest
(
unittest
.
TestCase
):
def
test_math_layer
(
self
):
addto
=
layer
.
addto
(
input
=
[
pixel
,
pixel
])
linear_comb
=
layer
.
linear_comb
(
weights
=
weight
,
vectors
=
hidden
,
size
=
10
)
interpolation
=
layer
.
interpolation
(
input
=
[
hidden
,
hidden
],
weight
=
score
)
bilinear
=
layer
.
bilinear_interp
(
input
=
conv
,
out_size_x
=
4
,
out_size_y
=
4
)
power
=
layer
.
power
(
input
=
pixel
,
weight
=
score
)
scaling
=
layer
.
scaling
(
input
=
pixel
,
weight
=
score
)
slope
=
layer
.
slope_intercept
(
input
=
pixel
)
tensor
=
layer
.
tensor
(
a
=
pixel
,
b
=
pixel
,
size
=
1000
)
cos_sim
=
layer
.
cos_sim
(
a
=
pixel
,
b
=
pixel
)
trans
=
layer
.
trans
(
input
=
tensor
)
print
layer
.
parse_network
(
addto
,
linear_comb
,
interpolation
,
power
,
scaling
,
slope
,
tensor
,
cos_sim
,
trans
)
class
ReshapeLayerTest
(
unittest
.
TestCase
):
def
test_reshape_layer
(
self
):
block_expand
=
layer
.
block_expand
(
input
=
conv
,
num_channels
=
4
,
stride_x
=
1
,
block_x
=
1
)
expand
=
layer
.
expand
(
input
=
weight
,
expand_as
=
pixel
,
expand_level
=
layer
.
ExpandLevel
.
FROM_TIMESTEP
)
repeat
=
layer
.
repeat
(
input
=
pixel
,
num_repeats
=
4
)
reshape
=
layer
.
seq_reshape
(
input
=
pixel
,
reshape_size
=
4
)
rotate
=
layer
.
rotate
(
input
=
pixel
,
height
=
16
,
width
=
49
)
print
layer
.
parse_network
(
block_expand
,
expand
,
repeat
,
reshape
,
rotate
)
class
RecurrentLayerTest
(
unittest
.
TestCase
):
def
test_recurrent_layer
(
self
):
word
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
integer_value
(
12
))
recurrent
=
layer
.
recurrent
(
input
=
word
)
lstm
=
layer
.
lstmemory
(
input
=
word
)
gru
=
layer
.
grumemory
(
input
=
word
)
print
layer
.
parse_network
(
recurrent
,
lstm
,
gru
)
class
CostLayerTest
(
unittest
.
TestCase
):
...
...
@@ -51,12 +139,120 @@ class CostLayerTest(unittest.TestCase):
cost10
=
layer
.
sum_cost
(
input
=
inference
)
cost11
=
layer
.
huber_cost
(
input
=
score
,
label
=
label
)
print
dir
(
layer
)
layer
.
parse_network
(
cost1
,
cost2
)
print
dir
(
layer
)
#print layer.parse_network(cost3, cost4)
#print layer.parse_network(cost5, cost6)
#print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
print
layer
.
parse_network
(
cost1
,
cost2
)
print
layer
.
parse_network
(
cost3
,
cost4
)
print
layer
.
parse_network
(
cost5
,
cost6
)
print
layer
.
parse_network
(
cost7
,
cost8
,
cost9
,
cost10
,
cost11
)
crf
=
layer
.
crf
(
input
=
inference
,
label
=
label
)
crf_decoding
=
layer
.
crf_decoding
(
input
=
inference
,
size
=
3
)
ctc
=
layer
.
ctc
(
input
=
inference
,
label
=
label
)
warp_ctc
=
layer
.
warp_ctc
(
input
=
pixel
,
label
=
label
)
nce
=
layer
.
nce
(
input
=
inference
,
label
=
label
,
num_classes
=
3
)
hsigmoid
=
layer
.
hsigmoid
(
input
=
inference
,
label
=
label
,
num_classes
=
3
)
print
layer
.
parse_network
(
crf
,
crf_decoding
,
ctc
,
warp_ctc
,
nce
,
hsigmoid
)
class
OtherLayerTest
(
unittest
.
TestCase
):
def
test_sampling_layer
(
self
):
maxid
=
layer
.
max_id
(
input
=
inference
)
sampling_id
=
layer
.
sampling_id
(
input
=
inference
)
eos
=
layer
.
eos
(
input
=
maxid
,
eos_id
=
5
)
print
layer
.
parse_network
(
maxid
,
sampling_id
,
eos
)
def
test_slicing_joining_layer
(
self
):
pad
=
layer
.
pad
(
input
=
conv
,
pad_c
=
[
2
,
3
],
pad_h
=
[
1
,
2
],
pad_w
=
[
3
,
1
])
print
layer
.
parse_network
(
pad
)
class
ProjOpTest
(
unittest
.
TestCase
):
def
test_projection
(
self
):
input
=
layer
.
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
word
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
integer_value_sequence
(
10000
))
fc0
=
layer
.
fc
(
input
=
input
,
size
=
100
,
act
=
activation
.
Sigmoid
())
fc1
=
layer
.
fc
(
input
=
input
,
size
=
200
,
act
=
activation
.
Sigmoid
())
mixed0
=
layer
.
mixed
(
size
=
256
,
input
=
[
layer
.
full_matrix_projection
(
input
=
fc0
),
layer
.
full_matrix_projection
(
input
=
fc1
)
])
with
layer
.
mixed
(
size
=
200
)
as
mixed1
:
mixed1
+=
layer
.
full_matrix_projection
(
input
=
fc0
)
mixed1
+=
layer
.
identity_projection
(
input
=
fc1
)
table
=
layer
.
table_projection
(
input
=
word
)
emb0
=
layer
.
mixed
(
size
=
512
,
input
=
table
)
with
layer
.
mixed
(
size
=
512
)
as
emb1
:
emb1
+=
table
scale
=
layer
.
scaling_projection
(
input
=
fc0
)
scale0
=
layer
.
mixed
(
size
=
100
,
input
=
scale
)
with
layer
.
mixed
(
size
=
100
)
as
scale1
:
scale1
+=
scale
dotmul
=
layer
.
dotmul_projection
(
input
=
fc0
)
dotmul0
=
layer
.
mixed
(
size
=
100
,
input
=
dotmul
)
with
layer
.
mixed
(
size
=
100
)
as
dotmul1
:
dotmul1
+=
dotmul
context
=
layer
.
context_projection
(
input
=
fc0
,
context_len
=
5
)
context0
=
layer
.
mixed
(
size
=
100
,
input
=
context
)
with
layer
.
mixed
(
size
=
100
)
as
context1
:
context1
+=
context
conv
=
layer
.
conv_projection
(
input
=
input
,
filter_size
=
1
,
num_channels
=
1
,
num_filters
=
128
,
stride
=
1
,
padding
=
0
)
conv0
=
layer
.
mixed
(
input
=
conv
,
bias_attr
=
True
)
with
layer
.
mixed
(
bias_attr
=
True
)
as
conv1
:
conv1
+=
conv
print
layer
.
parse_network
(
mixed0
)
print
layer
.
parse_network
(
mixed1
)
print
layer
.
parse_network
(
emb0
)
print
layer
.
parse_network
(
emb1
)
print
layer
.
parse_network
(
scale0
)
print
layer
.
parse_network
(
scale1
)
print
layer
.
parse_network
(
dotmul0
)
print
layer
.
parse_network
(
dotmul1
)
print
layer
.
parse_network
(
conv0
)
print
layer
.
parse_network
(
conv1
)
def
test_operator
(
self
):
ipt0
=
layer
.
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
ipt1
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
dense_vector
(
128
))
fc0
=
layer
.
fc
(
input
=
ipt0
,
size
=
100
,
act
=
activation
.
Sigmoid
())
fc1
=
layer
.
fc
(
input
=
ipt0
,
size
=
100
,
act
=
activation
.
Sigmoid
())
dotmul_op
=
layer
.
dotmul_operator
(
a
=
fc0
,
b
=
fc1
)
dotmul0
=
layer
.
mixed
(
input
=
dotmul_op
)
with
layer
.
mixed
()
as
dotmul1
:
dotmul1
+=
dotmul_op
conv
=
layer
.
conv_operator
(
img
=
ipt0
,
filter
=
ipt1
,
filter_size
=
1
,
num_channels
=
1
,
num_filters
=
128
,
stride
=
1
,
padding
=
0
)
conv0
=
layer
.
mixed
(
input
=
conv
)
with
layer
.
mixed
()
as
conv1
:
conv1
+=
conv
print
layer
.
parse_network
(
dotmul0
)
print
layer
.
parse_network
(
dotmul1
)
print
layer
.
parse_network
(
conv0
)
print
layer
.
parse_network
(
conv1
)
if
__name__
==
'__main__'
:
...
...
python/setup.py.in
浏览文件 @
db8566d7
...
...
@@ -17,6 +17,7 @@ setup(name='paddle',
'': '${CMAKE_CURRENT_SOURCE_DIR}'
},
install_requires = [
'scikit-learn>=0.18.0'
'scikit-learn>=0.18.0',
'scipy>=0.18.0',
]
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录