Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
daed473d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
daed473d
编写于
11月 03, 2018
作者:
K
Kaipeng Deng
提交者:
GitHub
11月 03, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14089 from heavengate/pool_exclude
add inclusive/exclusive mode in avg pool
上级
64f3e3ed
da8ee1fb
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
176 addition
and
76 deletion
+176
-76
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-2
paddle/fluid/operators/math/pooling.cc
paddle/fluid/operators/math/pooling.cc
+14
-8
paddle/fluid/operators/math/pooling.cu
paddle/fluid/operators/math/pooling.cu
+30
-25
paddle/fluid/operators/math/pooling.h
paddle/fluid/operators/math/pooling.h
+4
-4
paddle/fluid/operators/pool_cudnn_op.cu.cc
paddle/fluid/operators/pool_cudnn_op.cu.cc
+6
-2
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+29
-0
paddle/fluid/operators/pool_op.h
paddle/fluid/operators/pool_op.h
+8
-6
paddle/fluid/operators/spp_op.h
paddle/fluid/operators/spp_op.h
+5
-3
paddle/fluid/platform/cudnn_helper.h
paddle/fluid/platform/cudnn_helper.h
+8
-3
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+15
-7
python/paddle/fluid/tests/unittests/test_pool2d_op.py
python/paddle/fluid/tests/unittests/test_pool2d_op.py
+27
-8
python/paddle/fluid/tests/unittests/test_pool3d_op.py
python/paddle/fluid/tests/unittests/test_pool3d_op.py
+28
-8
未找到文件。
paddle/fluid/API.spec
浏览文件 @
daed473d
...
...
@@ -67,8 +67,8 @@ paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size',
paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type', 'is_test'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.layers.softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(True, None))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'
], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, Non
e))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'
], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, Non
e))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'
, 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, Tru
e))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'
, 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, Tru
e))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False))
paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
...
...
paddle/fluid/operators/math/pooling.cc
浏览文件 @
daed473d
...
...
@@ -31,7 +31,7 @@ class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
bool
exclusive
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
...
...
@@ -68,7 +68,8 @@ class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
pool_process
.
compute
(
input_data
[
h
*
input_width
+
w
],
&
ele
);
}
}
int
pool_size
=
(
hend
-
hstart
)
*
(
wend
-
wstart
);
int
pool_size
=
exclusive
?
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_height
*
ksize_width
;
pool_process
.
finalize
(
static_cast
<
T
>
(
pool_size
),
&
ele
);
output_data
[
ph
*
output_width
+
pw
]
=
ele
;
}
...
...
@@ -93,7 +94,7 @@ class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_grad_process
,
framework
::
Tensor
*
input_grad
)
{
bool
exclusive
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
...
...
@@ -124,7 +125,8 @@ class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
int
wstart
=
pw
*
stride_width
-
padding_width
;
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
int
pool_size
=
(
hend
-
hstart
)
*
(
wend
-
wstart
);
int
pool_size
=
exclusive
?
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_height
*
ksize_width
;
float
scale
=
1.0
/
pool_size
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
...
...
@@ -249,7 +251,7 @@ class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
bool
exclusive
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
...
...
@@ -300,7 +302,9 @@ class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
}
}
int
pool_size
=
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
);
exclusive
?
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_depth
*
ksize_height
*
ksize_width
;
pool_process
.
finalize
(
static_cast
<
T
>
(
pool_size
),
&
ele
);
output_data
[
output_idx
]
=
ele
;
}
...
...
@@ -326,7 +330,7 @@ class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_grad_process
,
framework
::
Tensor
*
input_grad
)
{
bool
exclusive
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
...
...
@@ -369,7 +373,9 @@ class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
wstart
=
std
::
max
(
wstart
,
0
);
int
pool_size
=
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
);
exclusive
?
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_depth
*
ksize_height
*
ksize_width
;
float
scale
=
1.0
/
pool_size
;
for
(
int
d
=
dstart
;
d
<
dend
;
++
d
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
...
...
paddle/fluid/operators/math/pooling.cu
浏览文件 @
daed473d
...
...
@@ -29,7 +29,7 @@ __global__ void KernelPool2D(const int nthreads, const T* input_data,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
PoolProcess
pool_process
,
T
*
output_data
)
{
bool
exclusive
,
T
*
output_data
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
...
...
@@ -52,7 +52,8 @@ __global__ void KernelPool2D(const int nthreads, const T* input_data,
pool_process
.
compute
(
input_data
[
h
*
input_width
+
w
],
&
ele
);
}
}
int
pool_size
=
(
hend
-
hstart
)
*
(
wend
-
wstart
);
int
pool_size
=
exclusive
?
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_height
*
ksize_width
;
pool_process
.
finalize
(
static_cast
<
T
>
(
pool_size
),
&
ele
);
output_data
[
index
]
=
ele
;
}
...
...
@@ -65,7 +66,7 @@ __global__ void KernelPool2DGrad(
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
PoolProcess
pool_process
,
T
*
input_grad
)
{
PoolProcess
pool_process
,
bool
exclusive
,
T
*
input_grad
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
offsetW
=
index
%
input_width
+
padding_width
;
...
...
@@ -95,7 +96,8 @@ __global__ void KernelPool2DGrad(
int
wend
=
min
(
wstart
+
ksize_width
,
input_width
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
int
pool_size
=
(
hend
-
hstart
)
*
(
wend
-
wstart
);
int
pool_size
=
exclusive
?
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_height
*
ksize_width
;
int
output_sub_idx
=
ph
*
output_width
+
pw
;
pool_process
.
compute
(
input
,
output_data
[
output_sub_idx
],
output_grad
[
output_sub_idx
],
...
...
@@ -163,7 +165,7 @@ class Pool2dFunctor<platform::CUDADeviceContext, PoolProcess, T> {
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
bool
exclusive
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_height
=
input
.
dims
()[
2
];
...
...
@@ -189,7 +191,8 @@ class Pool2dFunctor<platform::CUDADeviceContext, PoolProcess, T> {
KernelPool2D
<
PoolProcess
,
T
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
nthreads
,
input_data
,
input_channels
,
input_height
,
input_width
,
output_height
,
output_width
,
ksize_height
,
ksize_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
pool_process
,
output_data
);
stride_width
,
padding_height
,
padding_width
,
pool_process
,
exclusive
,
output_data
);
}
};
...
...
@@ -208,7 +211,7 @@ class Pool2dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
framework
::
Tensor
*
input_grad
)
{
bool
exclusive
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_height
=
input
.
dims
()[
2
];
...
...
@@ -236,7 +239,7 @@ class Pool2dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
nthreads
,
input_data
,
output_data
,
output_grad_data
,
input_channels
,
input_height
,
input_width
,
output_height
,
output_width
,
ksize_height
,
ksize_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
pool_process
,
input_grad_data
);
pool_process
,
exclusive
,
input_grad_data
);
}
};
...
...
@@ -313,16 +316,14 @@ template class Pool2dGradFunctor<platform::CUDADeviceContext,
double
>
;
template
<
typename
PoolProcess
,
typename
T
>
__global__
void
KernelPool3D
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
,
PoolProcess
pool_process
,
T
*
output_data
)
{
__global__
void
KernelPool3D
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
,
PoolProcess
pool_process
,
bool
exclusive
,
T
*
output_data
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
...
...
@@ -351,7 +352,9 @@ __global__ void KernelPool3D(const int nthreads, const T* input_data,
}
}
}
int
pool_size
=
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
);
int
pool_size
=
exclusive
?
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_depth
*
ksize_height
*
ksize_width
;
pool_process
.
finalize
(
static_cast
<
T
>
(
pool_size
),
&
ele
);
output_data
[
index
]
=
ele
;
}
...
...
@@ -366,7 +369,7 @@ __global__ void KernelPool3DGrad(
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
,
PoolProcess
pool_process
,
T
*
input_grad
)
{
bool
exclusive
,
T
*
input_grad
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
offsetW
=
index
%
input_width
+
padding_width
;
...
...
@@ -409,7 +412,9 @@ __global__ void KernelPool3DGrad(
dstart
=
max
(
dstart
,
0
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
int
pool_size
=
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
);
int
pool_size
=
exclusive
?
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_depth
*
ksize_height
*
ksize_width
;
int
output_sub_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
pool_process
.
compute
(
input
,
output_data
[
output_sub_idx
],
output_grad
[
output_sub_idx
],
...
...
@@ -484,7 +489,7 @@ class Pool3dFunctor<platform::CUDADeviceContext, PoolProcess, T> {
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
bool
exclusive
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_depth
=
input
.
dims
()[
2
];
...
...
@@ -517,7 +522,7 @@ class Pool3dFunctor<platform::CUDADeviceContext, PoolProcess, T> {
nthreads
,
input_data
,
input_channels
,
input_depth
,
input_height
,
input_width
,
output_depth
,
output_height
,
output_width
,
ksize_depth
,
ksize_height
,
ksize_width
,
stride_depth
,
stride_height
,
stride_width
,
padding_depth
,
padding_height
,
padding_width
,
pool_process
,
padding_depth
,
padding_height
,
padding_width
,
pool_process
,
exclusive
,
output_data
);
}
};
...
...
@@ -537,7 +542,7 @@ class Pool3dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
framework
::
Tensor
*
input_grad
)
{
bool
exclusive
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_depth
=
input
.
dims
()[
2
];
...
...
@@ -573,7 +578,7 @@ class Pool3dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
input_depth
,
input_height
,
input_width
,
output_depth
,
output_height
,
output_width
,
ksize_depth
,
ksize_height
,
ksize_width
,
stride_depth
,
stride_height
,
stride_width
,
padding_depth
,
padding_height
,
padding_width
,
pool_process
,
input_grad_data
);
padding_width
,
pool_process
,
exclusive
,
input_grad_data
);
}
};
...
...
paddle/fluid/operators/math/pooling.h
浏览文件 @
daed473d
...
...
@@ -89,7 +89,7 @@ class Pool2dFunctor {
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
framework
::
Tensor
*
output
);
bool
exclusive
,
framework
::
Tensor
*
output
);
};
template
<
typename
DeviceContext
,
typename
PoolProcess
,
typename
T
>
...
...
@@ -101,7 +101,7 @@ class Pool2dGradFunctor {
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
framework
::
Tensor
*
input_grad
);
bool
exclusive
,
framework
::
Tensor
*
input_grad
);
};
template
<
typename
DeviceContext
,
class
T
>
...
...
@@ -123,7 +123,7 @@ class Pool3dFunctor {
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
framework
::
Tensor
*
output
);
bool
exclusive
,
framework
::
Tensor
*
output
);
};
template
<
typename
DeviceContext
,
typename
PoolProcess
,
typename
T
>
...
...
@@ -135,7 +135,7 @@ class Pool3dGradFunctor {
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
framework
::
Tensor
*
input_grad
);
bool
exclusive
,
framework
::
Tensor
*
input_grad
);
};
template
<
typename
DeviceContext
,
class
T
>
...
...
paddle/fluid/operators/pool_cudnn_op.cu.cc
浏览文件 @
daed473d
...
...
@@ -41,6 +41,7 @@ class PoolCUDNNOpKernel : public framework::OpKernel<T> {
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling_type"
);
bool
exclusive
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
std
::
vector
<
int
>
ksize
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
...
...
@@ -72,7 +73,8 @@ class PoolCUDNNOpKernel : public framework::OpKernel<T> {
if
(
pooling_type
==
"max"
)
{
pooling_mode
=
PoolingMode
::
kMaximum
;
}
else
{
pooling_mode
=
PoolingMode
::
kAverage
;
pooling_mode
=
exclusive
?
PoolingMode
::
kAverageExclusive
:
PoolingMode
::
kAverageInclusive
;
}
cudnnPoolingDescriptor_t
cudnn_pool_desc
=
...
...
@@ -101,6 +103,7 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
Tensor
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling_type"
);
bool
exclusive
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
std
::
vector
<
int
>
ksize
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
...
...
@@ -141,7 +144,8 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
pooling_mode
=
PoolingMode
::
kMaximum
;
}
}
else
{
pooling_mode
=
PoolingMode
::
kAverage
;
pooling_mode
=
exclusive
?
PoolingMode
::
kAverageExclusive
:
PoolingMode
::
kAverageInclusive
;
}
cudnnPoolingDescriptor_t
cudnn_pool_desc
=
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
daed473d
...
...
@@ -180,6 +180,12 @@ void Pool2dOpMaker::Make() {
"operator."
"If global_pooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
});
AddAttr
<
bool
>
(
"exclusive"
,
"(bool, default True) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need install cudnn"
)
...
...
@@ -236,6 +242,23 @@ Example:
W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
$$
For exclusive = true:
$$
hstart = i * strides[0] - paddings[0]
hend = hstart + ksize[0]
wstart = j * strides[1] - paddings[1]
wend = wstart + ksize[1]
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
$$
For exclusive = false:
$$
hstart = max(0, i * strides[0] - paddings[0])
hend = min(H, hstart + ksize[0])
wstart = max(0, j * strides[1] - paddings[1])
wend = min(W, wstart + ksize[1])
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
$$
)DOC"
);
}
...
...
@@ -283,6 +306,12 @@ void Pool3dOpMaker::Make() {
"If global_pooling = true, ksize and paddings will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"exclusive"
,
"(bool, default True) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"use_cudnn"
,
...
...
paddle/fluid/operators/pool_op.h
浏览文件 @
daed473d
...
...
@@ -69,6 +69,7 @@ class PoolKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
exclusive
=
context
.
Attr
<
bool
>
(
"exclusive"
);
if
(
context
.
Attr
<
bool
>
(
"global_pooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
...
...
@@ -84,7 +85,7 @@ class PoolKernel : public framework::OpKernel<T> {
pool2d_forward
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
pool2d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
out
);
true
,
out
);
}
else
if
(
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
...
...
@@ -92,7 +93,7 @@ class PoolKernel : public framework::OpKernel<T> {
pool2d_forward
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
pool2d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
out
);
exclusive
,
out
);
}
}
break
;
case
3
:
{
...
...
@@ -102,14 +103,14 @@ class PoolKernel : public framework::OpKernel<T> {
pool3d_forward
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
pool3d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
out
);
true
,
out
);
}
else
if
(
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool3dFunctor
<
DeviceContext
,
paddle
::
operators
::
math
::
AvgPool
<
T
>
,
T
>
pool3d_forward
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
pool3d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
out
);
exclusive
,
out
);
}
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
...
...
@@ -131,6 +132,7 @@ class PoolGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
exclusive
=
context
.
Attr
<
bool
>
(
"exclusive"
);
if
(
context
.
Attr
<
bool
>
(
"global_pooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
...
...
@@ -157,7 +159,7 @@ class PoolGradKernel : public framework::OpKernel<T> {
pool2d_backward
;
paddle
::
operators
::
math
::
AvgPoolGrad
<
T
>
pool_process
;
pool2d_backward
(
dev_ctx
,
*
in_x
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
in_x_grad
);
paddings
,
pool_process
,
exclusive
,
in_x_grad
);
}
}
break
;
case
3
:
{
...
...
@@ -172,7 +174,7 @@ class PoolGradKernel : public framework::OpKernel<T> {
pool3d_backward
;
paddle
::
operators
::
math
::
AvgPoolGrad
<
T
>
pool_process
;
pool3d_backward
(
dev_ctx
,
*
in_x
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
in_x_grad
);
paddings
,
pool_process
,
exclusive
,
in_x_grad
);
}
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
...
...
paddle/fluid/operators/spp_op.h
浏览文件 @
daed473d
...
...
@@ -56,12 +56,14 @@ class SppKernel : public framework::OpKernel<T> {
math
::
Pool2dFunctor
<
DeviceContext
,
math
::
MaxPool
<
T
>
,
T
>
pool_forward
;
math
::
MaxPool
<
T
>
max_process
;
pool_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
kernel_size
,
strides
,
paddings
,
max_process
,
&
out_level
);
kernel_size
,
strides
,
paddings
,
max_process
,
true
,
&
out_level
);
}
else
if
(
pooling_type
==
"avg"
)
{
math
::
Pool2dFunctor
<
DeviceContext
,
math
::
AvgPool
<
T
>
,
T
>
pool_forward
;
math
::
AvgPool
<
T
>
avg_process
;
pool_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
kernel_size
,
strides
,
paddings
,
avg_process
,
&
out_level
);
kernel_size
,
strides
,
paddings
,
avg_process
,
true
,
&
out_level
);
}
// flatten pooling output shape
int
output_flatten_w
=
in_x
->
dims
()[
1
]
*
bins
*
bins
;
...
...
@@ -154,7 +156,7 @@ class SppGradKernel : public framework::OpKernel<T> {
math
::
AvgPoolGrad
<
T
>
avg_process
;
pool_backward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
*&
out_level
,
*&
outgrad_level
,
kernel_size
,
strides
,
paddings
,
avg_process
,
in_x_grad
);
paddings
,
avg_process
,
true
,
in_x_grad
);
}
}
}
...
...
paddle/fluid/platform/cudnn_helper.h
浏览文件 @
daed473d
...
...
@@ -76,8 +76,9 @@ enum class DataLayout { // Not use
enum
class
PoolingMode
{
kMaximum
,
kAverage
,
kMaximumDeterministic
,
kAverageExclusive
,
kAverageInclusive
,
};
#if CUDNN_VERSION < 6000
...
...
@@ -91,8 +92,10 @@ inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
switch
(
mode
)
{
case
PoolingMode
::
kMaximumDeterministic
:
return
CUDNN_POOLING_MAX
;
case
PoolingMode
::
kAverage
:
case
PoolingMode
::
kAverage
Exclusive
:
return
CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING
;
case
PoolingMode
::
kAverageInclusive
:
return
CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING
;
case
PoolingMode
::
kMaximum
:
return
CUDNN_POOLING_MAX
;
default:
...
...
@@ -105,8 +108,10 @@ inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
switch
(
mode
)
{
case
PoolingMode
::
kMaximumDeterministic
:
return
CUDNN_POOLING_MAX_DETERMINISTIC
;
case
PoolingMode
::
kAverage
:
case
PoolingMode
::
kAverage
Exclusive
:
return
CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING
;
case
PoolingMode
::
kAverageInclusive
:
return
CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING
;
case
PoolingMode
::
kMaximum
:
return
CUDNN_POOLING_MAX
;
default:
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
daed473d
...
...
@@ -2102,7 +2102,8 @@ def pool2d(input,
global_pooling
=
False
,
use_cudnn
=
True
,
ceil_mode
=
False
,
name
=
None
):
name
=
None
,
exclusive
=
True
):
"""
${comment}
...
...
@@ -2116,11 +2117,13 @@ def pool2d(input,
pool_type: ${pooling_type_comment}
pool_stride (int): stride of the pooling layer.
pool_padding (int): padding size.
global_pooling: ${global_pooling_comment}
use_cudnn: ${use_cudnn_comment}
ceil_mode: ${ceil_mode_comment}
global_pooling
(bool)
: ${global_pooling_comment}
use_cudnn
(bool)
: ${use_cudnn_comment}
ceil_mode
(bool)
: ${ceil_mode_comment}
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is true
Returns:
Variable: The pooling result.
...
...
@@ -2178,7 +2181,8 @@ def pool2d(input,
"paddings"
:
pool_padding
,
"use_cudnn"
:
use_cudnn
,
"ceil_mode"
:
ceil_mode
,
"use_mkldnn"
:
False
"use_mkldnn"
:
False
,
"exclusive"
:
exclusive
,
})
return
pool_out
...
...
@@ -2192,7 +2196,8 @@ def pool3d(input,
global_pooling
=
False
,
use_cudnn
=
True
,
ceil_mode
=
False
,
name
=
None
):
name
=
None
,
exclusive
=
True
):
"""
This function adds the operator for pooling in 3-dimensions, using the
pooling configurations mentioned in input parameters.
...
...
@@ -2208,6 +2213,8 @@ def pool3d(input,
ceil_mode (bool): ${ceil_mode_comment}
name (str): A name for this layer(optional). If set None, the layer
will be named automatically.
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is true
Returns:
Variable: output of pool3d layer.
...
...
@@ -2246,7 +2253,8 @@ def pool3d(input,
"paddings"
:
pool_padding
,
"use_cudnn"
:
use_cudnn
,
"ceil_mode"
:
ceil_mode
,
"use_mkldnn"
:
False
"use_mkldnn"
:
False
,
"exclusive"
:
exclusive
,
})
return
pool_out
...
...
python/paddle/fluid/tests/unittests/test_pool2d_op.py
浏览文件 @
daed473d
...
...
@@ -26,7 +26,8 @@ def max_pool2D_forward_naive(x,
strides
,
paddings
,
global_pool
=
0
,
ceil_mode
=
False
):
ceil_mode
=
False
,
exclusive
=
True
):
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
ksize
=
[
H
,
W
]
...
...
@@ -54,7 +55,8 @@ def avg_pool2D_forward_naive(x,
strides
,
paddings
,
global_pool
=
0
,
ceil_mode
=
False
):
ceil_mode
=
False
,
exclusive
=
True
):
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
ksize
=
[
H
,
W
]
...
...
@@ -73,8 +75,9 @@ def avg_pool2D_forward_naive(x,
c_end
=
np
.
min
((
j
*
strides
[
1
]
+
ksize
[
1
]
-
paddings
[
1
],
W
))
x_masked
=
x
[:,
:,
r_start
:
r_end
,
c_start
:
c_end
]
out
[:,
:,
i
,
j
]
=
np
.
sum
(
x_masked
,
axis
=
(
2
,
3
))
/
(
(
r_end
-
r_start
)
*
(
c_end
-
c_start
))
field_size
=
((
r_end
-
r_start
)
*
(
c_end
-
c_start
))
if
exclusive
\
else
(
ksize
[
0
]
*
ksize
[
1
])
out
[:,
:,
i
,
j
]
=
np
.
sum
(
x_masked
,
axis
=
(
2
,
3
))
/
field_size
return
out
...
...
@@ -89,12 +92,13 @@ class TestPool2d_Op(OpTest):
self
.
init_kernel_type
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
self
.
init_exclusive
()
if
self
.
global_pool
:
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
output
=
self
.
pool2D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mod
e
).
astype
(
self
.
dtype
)
output
=
self
.
pool2D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
,
self
.
exclusiv
e
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
attrs
=
{
...
...
@@ -106,7 +110,9 @@ class TestPool2d_Op(OpTest):
'use_cudnn'
:
self
.
use_cudnn
,
'use_mkldnn'
:
self
.
use_mkldnn
,
'ceil_mode'
:
self
.
ceil_mode
,
'data_format'
:
'AnyLayout'
# TODO(dzhwinter) : should be fix latter
'data_format'
:
'AnyLayout'
,
# TODO(dzhwinter) : should be fix latter
'exclusive'
:
self
.
exclusive
}
self
.
outputs
=
{
'Out'
:
output
}
...
...
@@ -150,6 +156,9 @@ class TestPool2d_Op(OpTest):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
False
def
init_exclusive
(
self
):
self
.
exclusive
=
True
class
TestCase1
(
TestPool2d_Op
):
def
init_test_case
(
self
):
...
...
@@ -322,5 +331,15 @@ class TestCeilModeCase4(TestCase2):
self
.
ceil_mode
=
True
class
TestAvgInclude
(
TestCase2
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
class
TestCUDNNAvgInclude
(
TestCUDNNCase3
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_pool3d_op.py
浏览文件 @
daed473d
...
...
@@ -26,7 +26,8 @@ def max_pool3D_forward_naive(x,
strides
,
paddings
,
global_pool
=
0
,
ceil_mode
=
False
):
ceil_mode
=
False
,
exclusive
=
True
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
ksize
=
[
D
,
H
,
W
]
...
...
@@ -60,7 +61,8 @@ def avg_pool3D_forward_naive(x,
strides
,
paddings
,
global_pool
=
0
,
ceil_mode
=
False
):
ceil_mode
=
False
,
exclusive
=
True
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
ksize
=
[
D
,
H
,
W
]
...
...
@@ -85,8 +87,10 @@ def avg_pool3D_forward_naive(x,
w_end
=
np
.
min
((
j
*
strides
[
1
]
+
ksize
[
1
]
-
paddings
[
1
],
W
))
x_masked
=
x
[:,
:,
d_start
:
d_end
,
h_start
:
h_end
,
w_start
:
w_end
]
out
[:,
:,
k
,
i
,
j
]
=
np
.
sum
(
x_masked
,
axis
=
(
2
,
3
,
4
))
/
(
(
d_end
-
d_start
)
*
(
h_end
-
h_start
)
*
(
w_end
-
w_start
))
field_size
=
(
d_end
-
d_start
)
*
(
h_end
-
h_start
)
*
(
w_end
-
w_start
)
\
if
exclusive
else
ksize
[
0
]
*
ksize
[
1
]
*
ksize
[
2
]
out
[:,
:,
k
,
i
,
j
]
=
np
.
sum
(
x_masked
,
axis
=
(
2
,
3
,
4
))
/
field_size
return
out
...
...
@@ -100,13 +104,14 @@ class TestPool3d_Op(OpTest):
self
.
init_kernel_type
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
self
.
init_exclusive
()
if
self
.
global_pool
:
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
output
=
self
.
pool3D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mod
e
).
astype
(
self
.
dtype
)
output
=
self
.
pool3D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
,
self
.
exclusiv
e
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
attrs
=
{
...
...
@@ -117,7 +122,9 @@ class TestPool3d_Op(OpTest):
'global_pooling'
:
self
.
global_pool
,
'use_cudnn'
:
self
.
use_cudnn
,
'ceil_mode'
:
self
.
ceil_mode
,
'data_format'
:
'AnyLayout'
# TODO(dzhwinter) : should be fix latter
'data_format'
:
'AnyLayout'
,
# TODO(dzhwinter) : should be fix latter
'exclusive'
:
self
.
exclusive
}
self
.
outputs
=
{
'Out'
:
output
}
...
...
@@ -161,6 +168,9 @@ class TestPool3d_Op(OpTest):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
False
def
init_exclusive
(
self
):
self
.
exclusive
=
True
class
TestCase1
(
TestPool3d_Op
):
def
init_test_case
(
self
):
...
...
@@ -333,5 +343,15 @@ class TestCeilModeCase4(TestCase2):
self
.
ceil_mode
=
True
class
TestAvgInclude
(
TestCase2
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
class
TestCUDNNAvgInclude
(
TestCUDNNCase3
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录