Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d9942cd1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d9942cd1
编写于
9月 18, 2018
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
差异文件
Merge develop
上级
a58a5284
0c8c0d94
变更
39
隐藏空白更改
内联
并排
Showing
39 changed file
with
1125 addition
and
111 deletion
+1125
-111
doc/fluid/dev/releasing_process_en.md
doc/fluid/dev/releasing_process_en.md
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+11
-1
paddle/fluid/framework/details/computation_op_handle.h
paddle/fluid/framework/details/computation_op_handle.h
+4
-0
paddle/fluid/framework/details/reference_count_op_handle.h
paddle/fluid/framework/details/reference_count_op_handle.h
+123
-0
paddle/fluid/framework/details/reference_count_pass.cc
paddle/fluid/framework/details/reference_count_pass.cc
+150
-0
paddle/fluid/framework/details/reference_count_pass.h
paddle/fluid/framework/details/reference_count_pass.h
+37
-0
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
...id/framework/details/scope_buffered_ssa_graph_executor.cc
+19
-0
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+72
-2
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+46
-0
paddle/fluid/framework/garbage_collector.h
paddle/fluid/framework/garbage_collector.h
+163
-0
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+8
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+32
-0
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+23
-0
paddle/fluid/framework/scope.cc
paddle/fluid/framework/scope.cc
+12
-0
paddle/fluid/framework/scope.h
paddle/fluid/framework/scope.h
+2
-0
paddle/fluid/framework/tensor.h
paddle/fluid/framework/tensor.h
+2
-0
paddle/fluid/inference/analysis/analyzer.cc
paddle/fluid/inference/analysis/analyzer.cc
+3
-2
paddle/fluid/inference/api/api_tensorrt_subgraph_engine.cc
paddle/fluid/inference/api/api_tensorrt_subgraph_engine.cc
+10
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+4
-2
paddle/fluid/inference/tensorrt/convert/activation_op.cc
paddle/fluid/inference/tensorrt/convert/activation_op.cc
+42
-6
paddle/fluid/inference/tensorrt/convert/dropout_op.cc
paddle/fluid/inference/tensorrt/convert/dropout_op.cc
+71
-0
paddle/fluid/inference/tensorrt/convert/test_activation_op.cc
...le/fluid/inference/tensorrt/convert/test_activation_op.cc
+14
-6
paddle/fluid/inference/tensorrt/convert/test_dropout_op.cc
paddle/fluid/inference/tensorrt/convert/test_dropout_op.cc
+58
-0
paddle/fluid/memory/detail/buddy_allocator.cc
paddle/fluid/memory/detail/buddy_allocator.cc
+2
-0
paddle/fluid/memory/detail/buddy_allocator.h
paddle/fluid/memory/detail/buddy_allocator.h
+2
-0
paddle/fluid/memory/malloc.cc
paddle/fluid/memory/malloc.cc
+2
-2
paddle/fluid/operators/math/cpu_lstm_compute.cc
paddle/fluid/operators/math/cpu_lstm_compute.cc
+1
-71
paddle/fluid/operators/math/cpu_lstm_compute.h
paddle/fluid/operators/math/cpu_lstm_compute.h
+57
-4
paddle/fluid/operators/while_op.cc
paddle/fluid/operators/while_op.cc
+3
-2
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+1
-1
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+3
-0
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+20
-1
paddle/fluid/platform/stream_callback_manager.h
paddle/fluid/platform/stream_callback_manager.h
+82
-0
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+6
-0
python/paddle/dataset/sentiment.py
python/paddle/dataset/sentiment.py
+1
-1
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-1
python/paddle/fluid/tests/unittests/test_desc_clone.py
python/paddle/fluid/tests/unittests/test_desc_clone.py
+7
-2
python/paddle/fluid/tests/unittests/test_while_op.py
python/paddle/fluid/tests/unittests/test_while_op.py
+22
-3
python/paddle/fluid/transpiler/details/program_utils.py
python/paddle/fluid/transpiler/details/program_utils.py
+8
-3
未找到文件。
doc/fluid/dev/releasing_process_en.md
浏览文件 @
d9942cd1
# PaddlePaddle Releasing Process
# PaddlePaddle Releasing Process
PaddlePaddle manages its branches using
"git-flow branching model"
, and
[
Semantic Versioning
](
http://semver.org/
)
as it's version number semantics.
PaddlePaddle manages its branches using
Trunk Based Development
, and
[
Semantic Versioning
](
http://semver.org/
)
as it's version number semantics.
Each time we release a new PaddlePaddle version, we should follow the below steps:
Each time we release a new PaddlePaddle version, we should follow the below steps:
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
d9942cd1
...
@@ -28,10 +28,20 @@ cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_
...
@@ -28,10 +28,20 @@ cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_
cc_library
(
gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
cc_library
(
gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
cc_library
(
fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope
)
cc_library
(
fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope
)
if
(
WITH_GPU
)
cc_library
(
reference_count_pass SRCS reference_count_pass.cc DEPS computation_op_handle scale_loss_grad_op_handle rpc_op_handle
all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass
)
endif
()
cc_library
(
multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
cc_library
(
multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle
)
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto
)
if
(
WITH_GPU
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto reference_count_pass
)
else
()
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto
)
endif
()
cc_library
(
threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
cc_library
(
threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context
)
simple_threadpool device_context
)
...
...
paddle/fluid/framework/details/computation_op_handle.h
浏览文件 @
d9942cd1
...
@@ -32,6 +32,10 @@ struct ComputationOpHandle : public OpHandleBase {
...
@@ -32,6 +32,10 @@ struct ComputationOpHandle : public OpHandleBase {
std
::
string
Name
()
const
override
;
std
::
string
Name
()
const
override
;
const
Scope
*
GetScope
()
const
{
return
scope_
;
}
const
platform
::
Place
&
GetPlace
()
const
{
return
place_
;
}
protected:
protected:
void
RunImpl
()
override
;
void
RunImpl
()
override
;
...
...
paddle/fluid/framework/details/reference_count_op_handle.h
0 → 100644
浏览文件 @
d9942cd1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <atomic>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
using
ReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
int
>
;
using
AtomicReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
std
::
atomic
<
int
>>
;
using
DeviceReferenceCountMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
ReferenceCountMap
>>
;
using
AtomicDeviceReferenceCountMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
AtomicReferenceCountMap
>>
;
using
DeviceGarbageCollectorMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
GarbageCollector
<
framework
::
Tensor
>>>
;
class
ReferenceCountOpHandle
:
public
OpHandleBase
{
public:
ReferenceCountOpHandle
(
ir
::
Node
*
node
,
const
Scope
*
scope
,
const
platform
::
CUDAPlace
&
place
,
const
std
::
vector
<
std
::
string
>
&
var_names
,
GarbageCollector
<
Tensor
>
*
gc
,
AtomicReferenceCountMap
*
ref_cnts
)
:
OpHandleBase
(
node
),
scope_
(
scope
),
var_names_
(
var_names
),
gc_
(
gc
),
ref_cnts_
(
ref_cnts
)
{
dev_ctx_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
if
(
IsStreamGarabageCollector
())
{
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaEventCreateWithFlags
(
&
event_
,
cudaEventDisableTiming
));
}
}
~
ReferenceCountOpHandle
()
{
if
(
IsStreamGarabageCollector
())
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_ctx_
->
GetPlace
());
PADDLE_ENFORCE
(
cudaSetDevice
(
gpu_place
.
device
));
PADDLE_ENFORCE
(
cudaEventDestroy
(
event_
));
}
}
std
::
string
Name
()
const
override
{
return
"reference_count"
;
}
protected:
void
RunImpl
()
override
{
auto
*
exec_scope
=
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
std
::
vector
<
LoDTensor
*>
tensors
;
for
(
auto
&
name
:
var_names_
)
{
auto
it
=
ref_cnts_
->
find
(
name
);
if
(
it
==
ref_cnts_
->
end
())
continue
;
auto
*
var
=
exec_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
||
!
var
->
IsType
<
LoDTensor
>
())
continue
;
if
(
it
->
second
.
fetch_sub
(
1
)
<=
1
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
());
}
}
if
(
!
tensors
.
empty
())
{
ClearTensors
(
tensors
);
}
}
private:
void
ClearTensors
(
const
std
::
vector
<
LoDTensor
*>
&
tensors
)
{
auto
*
gc
=
dynamic_cast
<
StreamGarbageCollector
<
Tensor
>
*>
(
gc_
);
if
(
gc
!=
nullptr
)
{
auto
compute_stream
=
dev_ctx_
->
stream
();
auto
callback_stream
=
gc
->
stream
();
auto
callback_func
=
[
=
]()
{
PADDLE_ENFORCE
(
cudaEventRecord
(
event_
,
compute_stream
));
PADDLE_ENFORCE
(
cudaStreamWaitEvent
(
callback_stream
,
event_
,
0
));
};
gc_
->
Add
(
tensors
,
callback_func
);
}
else
{
gc_
->
Add
(
tensors
);
}
}
bool
IsStreamGarabageCollector
()
const
{
return
dynamic_cast
<
const
StreamGarbageCollector
<
Tensor
>
*>
(
gc_
)
!=
nullptr
;
}
const
Scope
*
scope_
;
platform
::
CUDADeviceContext
*
dev_ctx_
;
std
::
vector
<
std
::
string
>
var_names_
;
GarbageCollector
<
Tensor
>
*
gc_
;
// not own
AtomicReferenceCountMap
*
ref_cnts_
;
// not own
cudaEvent_t
event_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reference_count_pass.cc
0 → 100644
浏览文件 @
d9942cd1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/reference_count_pass.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
std
::
unique_ptr
<
ir
::
Graph
>
ReferenceCountPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
&
ref_cnts
=
Get
<
DeviceReferenceCountMap
>
(
kGlobalReferenceCount
);
auto
&
cur_ref_cnts
=
Get
<
AtomicDeviceReferenceCountMap
>
(
kCurReferenceCount
);
auto
&
gcs
=
Get
<
DeviceGarbageCollectorMap
>
(
kGarbageCollector
);
// It is not easy to find the right reference counts of varaibles in graph
// Step 1: Find all variables in computation ops
// Step 2: Find all variables in non-computation ops which refers to variables
// in computation ops
std
::
unordered_set
<
std
::
string
>
names
;
auto
get_ref_cnts_from_compute_op
=
[
&
](
const
std
::
unique_ptr
<
OpHandleBase
>
&
op
,
const
std
::
vector
<
VarHandleBase
*>
&
vars
)
{
std
::
vector
<
std
::
string
>
var_names_in_op
;
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
.
get
());
if
(
compute_op
==
nullptr
||
!
platform
::
is_gpu_place
(
compute_op
->
GetPlace
()))
return
var_names_in_op
;
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
compute_op
->
GetPlace
());
for
(
VarHandleBase
*
var_handle_base
:
vars
)
{
auto
*
var_handle
=
dynamic_cast
<
VarHandle
*>
(
var_handle_base
);
if
(
var_handle
==
nullptr
||
!
var_handle
->
Node
()
->
IsVar
())
continue
;
if
(
!
platform
::
is_gpu_place
(
var_handle
->
place_
)
||
boost
::
get
<
platform
::
CUDAPlace
>
(
var_handle
->
place_
)
!=
place
)
continue
;
VarDesc
*
var_desc
=
var_handle
->
Node
()
->
Var
();
auto
var_name
=
var_handle
->
Node
()
->
Name
();
// This is wierd but there is really some variables without var_desc
// in computation_op
if
(
var_desc
==
nullptr
)
{
if
(
compute_op
->
Node
()
->
Op
()
->
Block
()
->
FindVar
(
var_name
)
==
nullptr
)
continue
;
}
else
{
if
(
var_desc
->
Persistable
()
||
var_desc
->
Proto
()
->
type
().
type
()
!=
proto
::
VarType
::
LOD_TENSOR
)
continue
;
}
// compute op only runs in one device
if
(
ref_cnts
[
place
.
device
]
->
count
(
var_name
))
++
(
*
ref_cnts
[
place
.
device
])[
var_name
];
else
(
*
ref_cnts
[
place
.
device
])[
var_name
]
=
1
;
names
.
insert
(
var_name
);
var_names_in_op
.
push_back
(
var_name
);
}
return
var_names_in_op
;
};
auto
update_ref_cnts_from_non_compute_op
=
[
&
](
const
std
::
unique_ptr
<
OpHandleBase
>
&
op
,
const
std
::
vector
<
VarHandleBase
*>
&
vars
)
{
if
(
dynamic_cast
<
ComputationOpHandle
*>
(
op
.
get
())
!=
nullptr
)
return
;
for
(
VarHandleBase
*
var_handle_base
:
vars
)
{
auto
*
var_handle
=
dynamic_cast
<
VarHandle
*>
(
var_handle_base
);
if
(
var_handle
==
nullptr
||
!
var_handle
->
Node
()
->
IsVar
())
continue
;
auto
var_name
=
var_handle
->
Node
()
->
Name
();
auto
var_place
=
var_handle
->
place_
;
if
(
!
platform
::
is_gpu_place
(
var_place
))
continue
;
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
var_place
);
if
(
names
.
count
(
var_name
)
==
0
)
continue
;
if
(
ref_cnts
.
count
(
place
.
device
)
&&
ref_cnts
[
place
.
device
]
->
count
(
var_name
))
{
++
(
*
ref_cnts
[
place
.
device
])[
var_name
];
}
}
};
std
::
unordered_map
<
OpHandleBase
*
,
ReferenceCountOpHandle
*>
compute_ref_cnt_map
;
auto
&
all_ops
=
graph
->
Get
<
GraphOps
>
(
kGraphOps
);
for
(
auto
&
op
:
all_ops
)
{
auto
in_var_names
=
get_ref_cnts_from_compute_op
(
op
,
op
->
Inputs
());
auto
out_var_names
=
get_ref_cnts_from_compute_op
(
op
,
op
->
Outputs
());
if
(
in_var_names
.
empty
()
&&
out_var_names
.
empty
())
continue
;
in_var_names
.
insert
(
in_var_names
.
end
(),
out_var_names
.
begin
(),
out_var_names
.
end
());
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
.
get
());
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
compute_op
->
GetPlace
());
ir
::
Node
*
ref_cnt_node
=
graph
->
CreateEmptyNode
(
"reference_count"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
compute_op
->
GetScope
(),
place
,
in_var_names
,
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
compute_op
->
AddOutput
(
dep_var
);
ref_cnt_handle
->
AddInput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
compute_ref_cnt_map
[
compute_op
]
=
ref_cnt_handle
;
}
for
(
auto
&
op
:
all_ops
)
{
update_ref_cnts_from_non_compute_op
(
op
,
op
->
Inputs
());
update_ref_cnts_from_non_compute_op
(
op
,
op
->
Outputs
());
}
std
::
vector
<
std
::
unique_ptr
<
OpHandleBase
>>
new_all_ops
;
new_all_ops
.
reserve
(
compute_ref_cnt_map
.
size
()
+
all_ops
.
size
());
for
(
auto
&
op
:
all_ops
)
{
new_all_ops
.
emplace_back
(
std
::
move
(
op
));
auto
it
=
compute_ref_cnt_map
.
find
(
new_all_ops
.
back
().
get
());
if
(
it
!=
compute_ref_cnt_map
.
end
())
{
new_all_ops
.
emplace_back
(
it
->
second
);
}
}
all_ops
.
swap
(
new_all_ops
);
return
graph
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
reference_count_pass
,
paddle
::
framework
::
details
::
ReferenceCountPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGlobalReferenceCount
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kCurReferenceCount
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGarbageCollector
);
paddle/fluid/framework/details/reference_count_pass.h
0 → 100644
浏览文件 @
d9942cd1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/details/reference_count_op_handle.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
constexpr
char
kGlobalReferenceCount
[]
=
"reference_count"
;
constexpr
char
kCurReferenceCount
[]
=
"current_reference_count"
;
constexpr
char
kGarbageCollector
[]
=
"garbage_collector"
;
class
ReferenceCountPass
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
浏览文件 @
d9942cd1
...
@@ -18,6 +18,9 @@
...
@@ -18,6 +18,9 @@
#include <vector>
#include <vector>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/profiler.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/reference_count_op_handle.h"
#endif
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
...
@@ -65,12 +68,28 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
...
@@ -65,12 +68,28 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
platform
::
RecordEvent
e
(
"ScopeBufferedSSAGraphExecutorAfterRun"
,
nullptr
);
platform
::
RecordEvent
e
(
"ScopeBufferedSSAGraphExecutorAfterRun"
,
nullptr
);
drop_scope_counter_
+=
1
;
drop_scope_counter_
+=
1
;
#ifdef PADDLE_WITH_CUDA
const
std
::
string
gc_name
=
"garbage_collector"
;
DeviceGarbageCollectorMap
*
gc
=
Graph
().
Has
(
gc_name
)
?
&
(
Graph
().
Get
<
DeviceGarbageCollectorMap
>
(
gc_name
))
:
nullptr
;
#endif
if
(
!
fetch_tensors
.
empty
()
||
if
(
!
fetch_tensors
.
empty
()
||
drop_scope_counter_
==
strategy_
.
num_iteration_per_drop_scope_
)
{
drop_scope_counter_
==
strategy_
.
num_iteration_per_drop_scope_
)
{
drop_scope_counter_
=
0
;
drop_scope_counter_
=
0
;
// Wait All computational streams
// Wait All computational streams
for
(
auto
p
:
places_
)
{
for
(
auto
p
:
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
#ifdef PADDLE_WITH_CUDA
if
(
gc
!=
nullptr
&&
platform
::
is_gpu_place
(
p
))
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
);
auto
&
gc_at_place
=
gc
->
at
(
gpu_place
.
device
);
gc_at_place
->
Wait
();
gc_at_place
->
Reset
();
}
#endif
}
}
for
(
auto
&
scope
:
local_scopes_
)
{
for
(
auto
&
scope
:
local_scopes_
)
{
auto
&
local_scope
=
auto
&
local_scope
=
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
d9942cd1
...
@@ -37,7 +37,11 @@ int kProgramId = -1;
...
@@ -37,7 +37,11 @@ int kProgramId = -1;
ExecutorPrepareContext
::
ExecutorPrepareContext
(
ExecutorPrepareContext
::
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
)
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
)
:
prog_
(
prog
),
block_id_
(
block_id
)
{}
:
prog_
(
prog
),
block_id_
(
block_id
)
{
if
(
GetEagerDeletionThreshold
()
>=
0
)
{
ref_cnts_
=
GetNonPersistableReferenceCount
<
int
>
(
prog_
,
block_id_
);
}
}
ExecutorPrepareContext
::~
ExecutorPrepareContext
()
{
ExecutorPrepareContext
::~
ExecutorPrepareContext
()
{
VLOG
(
5
)
<<
"destroy ExecutorPrepareContext"
;
VLOG
(
5
)
<<
"destroy ExecutorPrepareContext"
;
...
@@ -329,15 +333,81 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
...
@@ -329,15 +333,81 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
CreateVariables
(
ctx
->
prog_
,
local_scope
,
ctx
->
block_id_
);
CreateVariables
(
ctx
->
prog_
,
local_scope
,
ctx
->
block_id_
);
}
}
int64_t
max_memory_size
=
GetEagerDeletionThreshold
();
std
::
unique_ptr
<
GarbageCollector
<
Tensor
>>
gc
;
if
(
max_memory_size
>=
0
)
{
ctx
->
ResetReferenceCount
();
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place_
))
{
gc
.
reset
(
new
DefaultStreamGarbageCollector
<
Tensor
>
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
),
max_memory_size
));
}
else
{
#endif
gc
.
reset
(
new
CPUGarbageCollector
<
Tensor
>
(
boost
::
get
<
platform
::
CPUPlace
>
(
place_
),
max_memory_size
));
#ifdef PADDLE_WITH_CUDA
}
#endif
}
for
(
auto
&
op
:
ctx
->
ops_
)
{
for
(
auto
&
op
:
ctx
->
ops_
)
{
op
->
Run
(
*
local_scope
,
place_
);
op
->
Run
(
*
local_scope
,
place_
);
if
(
gc
!=
nullptr
)
{
std
::
vector
<
std
::
string
>
erase_vars
;
for
(
auto
&
input
:
op
->
Inputs
())
{
for
(
auto
&
input_name
:
input
.
second
)
{
auto
it
=
ctx
->
cur_ref_cnts_
.
find
(
input_name
);
if
(
it
==
ctx
->
cur_ref_cnts_
.
end
())
continue
;
if
(
it
->
second
==
1
)
{
// should delete it
erase_vars
.
emplace_back
(
input_name
);
ctx
->
cur_ref_cnts_
.
erase
(
input_name
);
}
else
{
--
(
it
->
second
);
}
}
}
for
(
auto
&
output
:
op
->
Outputs
())
{
for
(
auto
&
output_name
:
output
.
second
)
{
auto
it
=
ctx
->
cur_ref_cnts_
.
find
(
output_name
);
if
(
it
==
ctx
->
cur_ref_cnts_
.
end
())
continue
;
if
(
it
->
second
==
1
)
{
erase_vars
.
emplace_back
(
output_name
);
ctx
->
cur_ref_cnts_
.
erase
(
output_name
);
}
else
{
--
(
it
->
second
);
}
}
}
if
(
!
erase_vars
.
empty
())
{
std
::
vector
<
framework
::
LoDTensor
*>
erase_tensors
;
for
(
auto
&
name
:
erase_vars
)
{
auto
*
var
=
local_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
erase_tensors
.
push_back
(
tensor
);
}
}
if
(
!
erase_tensors
.
empty
())
gc
->
Add
(
erase_tensors
);
}
}
if
(
FLAGS_benchmark
)
{
if
(
FLAGS_benchmark
)
{
VLOG
(
2
)
<<
"Memory used after operator "
+
op
->
Type
()
+
" running: "
VLOG
(
2
)
<<
"Memory used after operator "
+
op
->
Type
()
+
" running: "
<<
memory
::
memory_usage
(
place_
);
<<
memory
::
memory_usage
(
place_
);
}
}
}
}
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
)
->
Wait
();
if
(
gc
!=
nullptr
)
{
gc
->
Wait
();
}
else
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
)
->
Wait
();
}
if
(
local_scope
!=
scope
)
{
if
(
local_scope
!=
scope
)
{
scope
->
DeleteScope
(
local_scope
);
scope
->
DeleteScope
(
local_scope
);
}
else
{
}
else
{
...
...
paddle/fluid/framework/executor.h
浏览文件 @
d9942cd1
...
@@ -17,6 +17,7 @@ limitations under the License. */
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <map>
#include <map>
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/scope.h"
...
@@ -27,13 +28,58 @@ namespace paddle {
...
@@ -27,13 +28,58 @@ namespace paddle {
namespace
framework
{
namespace
framework
{
extern
void
InitializeVariable
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
);
extern
void
InitializeVariable
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
);
template
<
typename
T
>
std
::
unordered_map
<
std
::
string
,
T
>
GetNonPersistableReferenceCount
(
const
ProgramDesc
&
prog
,
size_t
block_id
)
{
auto
&
block
=
prog
.
Block
(
block_id
);
std
::
unordered_set
<
std
::
string
>
ignored_vars
;
std
::
unordered_map
<
std
::
string
,
T
>
ref_cnts
;
for
(
auto
var_desc
:
block
.
AllVars
())
{
auto
type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
type
!=
proto
::
VarType
::
LOD_TENSOR
||
var_desc
->
Persistable
())
{
ignored_vars
.
insert
(
var_desc
->
Name
());
// ignore persistable vars
}
}
for
(
auto
op_desc
:
block
.
AllOps
())
{
for
(
auto
&
input
:
op_desc
->
Inputs
())
{
for
(
auto
&
input_name
:
input
.
second
)
{
if
(
!
ignored_vars
.
count
(
input_name
))
{
if
(
ref_cnts
.
count
(
input_name
))
++
ref_cnts
[
input_name
];
else
ref_cnts
[
input_name
]
=
1
;
}
}
}
for
(
auto
&
output
:
op_desc
->
Outputs
())
{
for
(
auto
output_name
:
output
.
second
)
{
if
(
!
ignored_vars
.
count
(
output_name
))
{
if
(
ref_cnts
.
count
(
output_name
))
++
ref_cnts
[
output_name
];
else
ref_cnts
[
output_name
]
=
1
;
}
}
}
}
return
ref_cnts
;
}
struct
ExecutorPrepareContext
{
struct
ExecutorPrepareContext
{
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
);
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
);
~
ExecutorPrepareContext
();
~
ExecutorPrepareContext
();
void
ResetReferenceCount
()
{
cur_ref_cnts_
=
ref_cnts_
;
}
const
framework
::
ProgramDesc
&
prog_
;
const
framework
::
ProgramDesc
&
prog_
;
size_t
block_id_
;
size_t
block_id_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
std
::
unordered_map
<
std
::
string
,
int
>
ref_cnts_
;
std
::
unordered_map
<
std
::
string
,
int
>
cur_ref_cnts_
;
};
};
class
Executor
{
class
Executor
{
...
...
paddle/fluid/framework/garbage_collector.h
0 → 100644
浏览文件 @
d9942cd1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <deque>
#include <functional>
#include <memory>
#include <mutex> // NOLINT
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
framework
{
// T should have memory_size() and clear() method
template
<
typename
T
>
class
GarbageCollector
{
public:
GarbageCollector
(
const
platform
::
Place
&
place
,
size_t
max_memory_size
)
:
max_memory_size_
(
std
::
max
(
max_memory_size
,
static_cast
<
size_t
>
(
1
)))
{
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
dev_ctx_
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
}
virtual
~
GarbageCollector
()
{}
void
Reset
()
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mutex_
);
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
cur_memory_size_
=
0
;
}
template
<
typename
Container
>
void
Add
(
const
Container
&
objs
)
{
Add
(
objs
,
[]()
{});
}
template
<
typename
Container
,
typename
Callback
>
void
Add
(
const
Container
&
objs
,
Callback
&&
callback
)
{
std
::
shared_ptr
<
std
::
deque
<
T
*>>
clear_deque
;
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mutex_
);
for
(
auto
*
obj
:
objs
)
{
garbages_
->
push_back
(
obj
);
cur_memory_size_
+=
obj
->
memory_size
();
}
if
(
cur_memory_size_
>=
max_memory_size_
)
{
cur_memory_size_
=
0
;
clear_deque
=
garbages_
;
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
}
}
if
(
clear_deque
!=
nullptr
)
{
callback
();
ClearCallback
([
=
]()
{
for
(
auto
*
obj
:
*
clear_deque
)
obj
->
clear
();
});
}
}
virtual
void
Wait
()
const
{}
protected:
virtual
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
=
0
;
platform
::
DeviceContext
*
dev_ctx_
;
std
::
shared_ptr
<
std
::
deque
<
T
*>>
garbages_
;
mutable
std
::
mutex
mutex_
;
const
size_t
max_memory_size_
;
size_t
cur_memory_size_
=
0
;
};
template
<
typename
T
>
class
CPUGarbageCollector
:
public
GarbageCollector
<
T
>
{
public:
CPUGarbageCollector
(
const
platform
::
CPUPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{}
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
callback
();
}
};
#ifdef PADDLE_WITH_CUDA
template
<
typename
T
>
class
DefaultStreamGarbageCollector
:
public
GarbageCollector
<
T
>
{
public:
DefaultStreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{}
cudaStream_t
stream
()
const
{
return
static_cast
<
const
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
stream
();
}
void
Wait
()
const
override
{
this
->
dev_ctx_
->
Wait
();
static_cast
<
const
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
WaitStreamCallback
();
}
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
AddStreamCallback
(
callback
);
}
};
template
<
typename
T
>
class
StreamGarbageCollector
:
public
GarbageCollector
<
T
>
{
public:
StreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaStreamCreate
(
&
stream_
));
callback_manager_
.
reset
(
new
platform
::
StreamCallbackManager
(
stream_
));
}
~
StreamGarbageCollector
()
{
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
this
->
dev_ctx_
->
GetPlace
());
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
}
void
Wait
()
const
override
{
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
std
::
lock_guard
<
std
::
mutex
>
guard
(
this
->
mutex_
);
callback_manager_
->
Wait
();
}
cudaStream_t
stream
()
const
{
return
stream_
;
}
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
this
->
mutex_
);
callback_manager_
->
AddCallback
(
callback
);
}
private:
cudaStream_t
stream_
;
std
::
unique_ptr
<
platform
::
StreamCallbackManager
>
callback_manager_
;
};
#endif
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph.h
浏览文件 @
d9942cd1
...
@@ -94,6 +94,14 @@ class Graph {
...
@@ -94,6 +94,14 @@ class Graph {
};
};
}
}
template
<
typename
AttrType
>
void
SetNotOwned
(
const
std
::
string
&
attr_name
,
AttrType
*
attr
)
{
PADDLE_ENFORCE
(
attrs_
.
count
(
attr_name
)
==
0
,
"%s already set in the graph"
,
attr_name
);
attrs_
[
attr_name
]
=
attr
;
attr_dels_
[
attr_name
]
=
[]()
{};
}
const
std
::
unordered_set
<
ir
::
Node
*>
&
Nodes
()
const
{
return
node_set_
;
}
const
std
::
unordered_set
<
ir
::
Node
*>
&
Nodes
()
const
{
return
node_set_
;
}
// Create a normal variable with non-null VarDesc.
// Create a normal variable with non-null VarDesc.
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
d9942cd1
...
@@ -188,6 +188,30 @@ ParallelExecutor::ParallelExecutor(
...
@@ -188,6 +188,30 @@ ParallelExecutor::ParallelExecutor(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
,
build_strategy
,
member_
->
local_scopes_
,
member_
->
use_cuda_
,
build_strategy
,
member_
->
nccl_ctxs_
.
get
());
member_
->
nccl_ctxs_
.
get
());
auto
max_memory_size
=
GetEagerDeletionThreshold
();
if
(
max_memory_size
>=
0
)
{
for
(
auto
&
place
:
member_
->
places_
)
{
if
(
!
platform
::
is_gpu_place
(
place
))
continue
;
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
if
(
gcs_
[
gpu_place
.
device
]
==
nullptr
)
{
ref_cnts_
[
gpu_place
.
device
].
reset
(
new
details
::
ReferenceCountMap
());
cur_ref_cnts_
[
gpu_place
.
device
].
reset
(
new
details
::
AtomicReferenceCountMap
());
gcs_
[
gpu_place
.
device
].
reset
(
new
StreamGarbageCollector
<
Tensor
>
(
gpu_place
,
max_memory_size
));
}
}
if
(
!
gcs_
.
empty
())
{
auto
ref_cnt_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"reference_count_pass"
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGlobalReferenceCount
,
&
ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kCurReferenceCount
,
&
cur_ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGarbageCollector
,
&
gcs_
);
graph
=
ref_cnt_pass
->
Apply
(
std
::
move
(
graph
));
graph
->
SetNotOwned
(
"garbage_collector"
,
&
gcs_
);
}
}
#else
#else
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
ApplyParallelExecutorPass
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
ApplyParallelExecutorPass
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
...
@@ -310,6 +334,11 @@ void ParallelExecutor::BCastParamsToDevices(
...
@@ -310,6 +334,11 @@ void ParallelExecutor::BCastParamsToDevices(
void
ParallelExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
void
ParallelExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
const
std
::
string
&
fetched_var_name
)
{
const
std
::
string
&
fetched_var_name
)
{
platform
::
RecordBlock
b
(
0
);
platform
::
RecordBlock
b
(
0
);
#ifdef PADDLE_WITH_CUDA
if
(
!
gcs_
.
empty
())
{
ResetReferenceCount
();
}
#endif
auto
fetch_data
=
member_
->
executor_
->
Run
(
fetch_tensors
);
auto
fetch_data
=
member_
->
executor_
->
Run
(
fetch_tensors
);
*
member_
->
global_scope_
->
Var
(
fetched_var_name
)
->
GetMutable
<
FeedFetchList
>
()
=
*
member_
->
global_scope_
->
Var
(
fetched_var_name
)
->
GetMutable
<
FeedFetchList
>
()
=
fetch_data
;
fetch_data
;
...
@@ -367,3 +396,6 @@ USE_PASS(graph_viz_pass);
...
@@ -367,3 +396,6 @@ USE_PASS(graph_viz_pass);
USE_PASS
(
multi_devices_pass
);
USE_PASS
(
multi_devices_pass
);
USE_PASS
(
multi_devices_check_pass
);
USE_PASS
(
multi_devices_check_pass
);
USE_PASS
(
multi_devices_print_pass
);
USE_PASS
(
multi_devices_print_pass
);
#ifdef PADDLE_WITH_CUDA
USE_PASS
(
reference_count_pass
);
#endif
paddle/fluid/framework/parallel_executor.h
浏览文件 @
d9942cd1
...
@@ -15,7 +15,9 @@ limitations under the License. */
...
@@ -15,7 +15,9 @@ limitations under the License. */
#pragma once
#pragma once
#include <paddle/fluid/framework/details/build_strategy.h>
#include <paddle/fluid/framework/details/build_strategy.h>
#include <atomic>
#include <string>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <unordered_set>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
...
@@ -27,6 +29,10 @@ limitations under the License. */
...
@@ -27,6 +29,10 @@ limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/reference_count_pass.h"
#endif
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
...
@@ -70,6 +76,23 @@ class ParallelExecutor {
...
@@ -70,6 +76,23 @@ class ParallelExecutor {
private:
private:
ParallelExecutorPrivate
*
member_
;
ParallelExecutorPrivate
*
member_
;
#ifdef PADDLE_WITH_CUDA
// ref_cnts_ is only initialized when ParallelExecutor constructs, and then
// keeps unchanged
// Before each iteration, cur_ref_cnts_ is reset to ref_cnts_
details
::
DeviceReferenceCountMap
ref_cnts_
;
details
::
AtomicDeviceReferenceCountMap
cur_ref_cnts_
;
details
::
DeviceGarbageCollectorMap
gcs_
;
void
ResetReferenceCount
()
{
for
(
auto
&
pair1
:
ref_cnts_
)
{
for
(
auto
&
pair2
:
*
(
pair1
.
second
))
{
(
*
(
cur_ref_cnts_
[
pair1
.
first
]))[
pair2
.
first
]
=
pair2
.
second
;
}
}
}
#endif
};
};
}
// namespace framework
}
// namespace framework
...
...
paddle/fluid/framework/scope.cc
浏览文件 @
d9942cd1
...
@@ -31,9 +31,21 @@ DEFINE_bool(
...
@@ -31,9 +31,21 @@ DEFINE_bool(
"Delete local scope eagerly. It will reduce GPU memory usage but "
"Delete local scope eagerly. It will reduce GPU memory usage but "
"slow down the destruction of variables.(around 1% performance harm)"
);
"slow down the destruction of variables.(around 1% performance harm)"
);
DEFINE_double
(
eager_delete_tensor_gb
,
-
1.0
,
"Memory size threshold (GB) when the garbage collector clear tensors."
"Disabled when this value is less than 0"
);
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
int64_t
GetEagerDeletionThreshold
()
{
return
FLAGS_eager_delete_tensor_gb
<
0
?
-
1
:
static_cast
<
int64_t
>
(
FLAGS_eager_delete_tensor_gb
*
(
static_cast
<
int64_t
>
(
1
)
<<
30
));
}
Scope
::~
Scope
()
{
DropKids
();
}
Scope
::~
Scope
()
{
DropKids
();
}
Scope
&
Scope
::
NewScope
()
const
{
Scope
&
Scope
::
NewScope
()
const
{
...
...
paddle/fluid/framework/scope.h
浏览文件 @
d9942cd1
...
@@ -26,6 +26,8 @@ limitations under the License. */
...
@@ -26,6 +26,8 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
int64_t
GetEagerDeletionThreshold
();
class
Scope
;
class
Scope
;
/**
/**
...
...
paddle/fluid/framework/tensor.h
浏览文件 @
d9942cd1
...
@@ -151,6 +151,8 @@ class Tensor {
...
@@ -151,6 +151,8 @@ class Tensor {
void
set_layout
(
const
DataLayout
layout
)
{
layout_
=
layout
;
}
void
set_layout
(
const
DataLayout
layout
)
{
layout_
=
layout
;
}
void
clear
()
{
holder_
=
nullptr
;
}
private:
private:
/**
/**
* @note Placeholder hides type T, so it doesn't appear as a template
* @note Placeholder hides type T, so it doesn't appear as a template
...
...
paddle/fluid/inference/analysis/analyzer.cc
浏览文件 @
d9942cd1
...
@@ -69,8 +69,9 @@ class DfgPassManagerImpl final : public DfgPassManager {
...
@@ -69,8 +69,9 @@ class DfgPassManagerImpl final : public DfgPassManager {
if
(
FLAGS_IA_enable_tensorrt_subgraph_engine
)
{
if
(
FLAGS_IA_enable_tensorrt_subgraph_engine
)
{
auto
trt_teller
=
[
&
](
const
Node
*
node
)
{
auto
trt_teller
=
[
&
](
const
Node
*
node
)
{
std
::
unordered_set
<
std
::
string
>
teller_set
(
std
::
unordered_set
<
std
::
string
>
teller_set
(
{
"elementwise_add"
,
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
{
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
"sigmoid"
,
"depthwise_conv2d"
,
"batch_norm"
,
"concat"
});
"depthwise_conv2d"
,
"batch_norm"
,
"concat"
,
"tanh"
,
"elementwise_add"
,
"dropout"
});
if
(
!
node
->
IsFunction
())
return
false
;
if
(
!
node
->
IsFunction
())
return
false
;
const
auto
*
func
=
static_cast
<
const
Function
*>
(
node
);
const
auto
*
func
=
static_cast
<
const
Function
*>
(
node
);
...
...
paddle/fluid/inference/api/api_tensorrt_subgraph_engine.cc
浏览文件 @
d9942cd1
...
@@ -153,11 +153,21 @@ CreatePaddlePredictor<TensorRTConfig, PaddleEngineKind::kAutoMixedTensorRT>(
...
@@ -153,11 +153,21 @@ CreatePaddlePredictor<TensorRTConfig, PaddleEngineKind::kAutoMixedTensorRT>(
}
// namespace paddle
}
// namespace paddle
USE_TRT_CONVERTER
(
elementwise_add_weight
);
USE_TRT_CONVERTER
(
elementwise_add_weight
);
USE_TRT_CONVERTER
(
elementwise_add_tensor
);
USE_TRT_CONVERTER
(
elementwise_sub_tensor
);
USE_TRT_CONVERTER
(
elementwise_div_tensor
);
USE_TRT_CONVERTER
(
elementwise_mul_tensor
);
USE_TRT_CONVERTER
(
elementwise_max_tensor
);
USE_TRT_CONVERTER
(
elementwise_min_tensor
);
USE_TRT_CONVERTER
(
elementwise_pow_tensor
);
USE_TRT_CONVERTER
(
mul
);
USE_TRT_CONVERTER
(
mul
);
USE_TRT_CONVERTER
(
conv2d
);
USE_TRT_CONVERTER
(
conv2d
);
USE_TRT_CONVERTER
(
relu
);
USE_TRT_CONVERTER
(
relu
);
USE_TRT_CONVERTER
(
sigmoid
);
USE_TRT_CONVERTER
(
tanh
);
USE_TRT_CONVERTER
(
fc
);
USE_TRT_CONVERTER
(
fc
);
USE_TRT_CONVERTER
(
pool2d
);
USE_TRT_CONVERTER
(
pool2d
);
USE_TRT_CONVERTER
(
softmax
);
USE_TRT_CONVERTER
(
softmax
);
USE_TRT_CONVERTER
(
batch_norm
);
USE_TRT_CONVERTER
(
batch_norm
);
USE_TRT_CONVERTER
(
concat
);
USE_TRT_CONVERTER
(
concat
);
USE_TRT_CONVERTER
(
dropout
);
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
d9942cd1
# Add TRT tests
# Add TRT tests
nv_library
(
tensorrt_converter
nv_library
(
tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc
dropout_op.cc
DEPS tensorrt_engine operator scope framework_proto op_registry
)
DEPS tensorrt_engine operator scope framework_proto op_registry
)
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
...
@@ -24,6 +24,8 @@ nv_test(test_trt_softmax_op SRCS test_softmax_op.cc softmax_op.cc
...
@@ -24,6 +24,8 @@ nv_test(test_trt_softmax_op SRCS test_softmax_op.cc softmax_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine softmax_op SERIAL
)
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine softmax_op SERIAL
)
nv_test
(
test_trt_batch_norm_op SRCS test_batch_norm_op.cc batch_norm_op.cc
nv_test
(
test_trt_batch_norm_op SRCS test_batch_norm_op.cc batch_norm_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine batch_norm_op SERIAL
)
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine batch_norm_op SERIAL
)
nv_test
(
test_trt_concat_op SRCS test_concat_op.cc concat_op.cc
nv_test
(
test_trt_concat_op SRCS test_concat_op.cc concat_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine concat_op SERIAL
)
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine concat_op SERIAL
)
nv_test
(
test_trt_dropout_op SRCS test_dropout_op.cc dropout_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine dropout_op SERIAL
)
paddle/fluid/inference/tensorrt/convert/activation_op.cc
浏览文件 @
d9942cd1
...
@@ -19,23 +19,31 @@ namespace paddle {
...
@@ -19,23 +19,31 @@ namespace paddle {
namespace
inference
{
namespace
inference
{
namespace
tensorrt
{
namespace
tensorrt
{
class
Relu
OpConverter
:
public
OpConverter
{
class
Activation
OpConverter
:
public
OpConverter
{
public:
public:
Relu
OpConverter
()
{}
Activation
OpConverter
()
{}
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
// Here the two nullptr looks strange, that's because the
// Here the two nullptr looks strange, that's because the
// framework::OpDesc's constructor is strange.
// framework::OpDesc's constructor is strange.
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
LOG
(
INFO
)
<<
"convert a fluid relu op to tensorrt activation layer whose "
LOG
(
INFO
)
"type is Relu"
;
<<
"convert a fluid Activation op to tensorrt activation layer whose "
"type is "
<<
op_type_
;
const
nvinfer1
::
ITensor
*
input_tensor
=
const
nvinfer1
::
ITensor
*
input_tensor
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
op_pair
=
ops
.
find
(
op_type_
);
if
(
op_pair
==
ops
.
end
())
{
PADDLE_THROW
(
"Wrong activation op type!"
);
}
nvinfer1
::
IActivationLayer
*
layer
=
TRT_ENGINE_ADD_LAYER
(
nvinfer1
::
IActivationLayer
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Activation
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input_tensor
),
engine_
,
Activation
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input_tensor
),
nvinfer1
::
ActivationType
::
kRELU
);
op_pair
->
second
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
layer
->
setName
((
"relu
(Output: "
+
output_name
+
")"
).
c_str
());
layer
->
setName
((
op_type_
+
"
(Output: "
+
output_name
+
")"
).
c_str
());
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
// the test framework can not determine which is the
if
(
test_mode
)
{
// the test framework can not determine which is the
...
@@ -43,6 +51,32 @@ class ReluOpConverter : public OpConverter {
...
@@ -43,6 +51,32 @@ class ReluOpConverter : public OpConverter {
engine_
->
DeclareOutput
(
output_name
);
engine_
->
DeclareOutput
(
output_name
);
}
}
}
}
protected:
std
::
string
op_type_
;
static
const
std
::
unordered_map
<
std
::
string
,
nvinfer1
::
ActivationType
>
ops
;
};
const
std
::
unordered_map
<
std
::
string
,
nvinfer1
::
ActivationType
>
ActivationOpConverter
::
ops
=
{
{
"relu"
,
nvinfer1
::
ActivationType
::
kRELU
},
{
"sigmoid"
,
nvinfer1
::
ActivationType
::
kSIGMOID
},
{
"tanh"
,
nvinfer1
::
ActivationType
::
kTANH
},
};
class
ReluOpConverter
:
public
ActivationOpConverter
{
public:
ReluOpConverter
()
{
op_type_
=
"relu"
;
}
};
class
SigmoidOpConverter
:
public
ActivationOpConverter
{
public:
SigmoidOpConverter
()
{
op_type_
=
"sigmoid"
;
}
};
class
TanhOpConverter
:
public
ActivationOpConverter
{
public:
TanhOpConverter
()
{
op_type_
=
"tanh"
;
}
};
};
}
// namespace tensorrt
}
// namespace tensorrt
...
@@ -50,3 +84,5 @@ class ReluOpConverter : public OpConverter {
...
@@ -50,3 +84,5 @@ class ReluOpConverter : public OpConverter {
}
// namespace paddle
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
relu
,
ReluOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
relu
,
ReluOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
sigmoid
,
SigmoidOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
tanh
,
TanhOpConverter
);
paddle/fluid/inference/tensorrt/convert/dropout_op.cc
0 → 100644
浏览文件 @
d9942cd1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
/*
* DropoutOp. This Layer doesn't has weights.
*/
class
DropoutOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid dropout op to tensorrt dropout layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
auto
*
input1
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
float
dropout_prob
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"dropout_prob"
));
platform
::
CPUPlace
cpu_place
;
std
::
unique_ptr
<
framework
::
LoDTensor
>
weight_tensor
(
new
framework
::
LoDTensor
());
weight_tensor
->
Resize
(
framework
::
make_ddim
({
1
}));
auto
*
weight_data
=
weight_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
weight_data
[
0
]
=
1
-
dropout_prob
;
TensorRTEngine
::
Weight
scale_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
weight_tensor
->
memory_size
()
/
sizeof
(
float
)};
TensorRTEngine
::
Weight
shift_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
TensorRTEngine
::
Weight
power_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Scale
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input1
),
nvinfer1
::
ScaleMode
::
kUNIFORM
,
shift_weights
.
get
(),
scale_weights
.
get
(),
power_weights
.
get
());
engine_
->
weight_map
[
op_desc
.
Output
(
"Out"
).
front
()
+
"_dropout"
]
=
std
::
move
(
weight_tensor
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
layer
->
setName
((
"dropout (Output: "
+
output_name
+
")"
).
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
}
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_OP
(
dropout
);
REGISTER_TRT_OP_CONVERTER
(
dropout
,
DropoutOpConverter
);
paddle/fluid/inference/tensorrt/convert/test_activation_op.cc
浏览文件 @
d9942cd1
...
@@ -20,18 +20,18 @@ namespace paddle {
...
@@ -20,18 +20,18 @@ namespace paddle {
namespace
inference
{
namespace
inference
{
namespace
tensorrt
{
namespace
tensorrt
{
TEST
(
ReluOpConverter
,
main
)
{
void
test_activation
(
std
::
string
act_type
)
{
framework
::
Scope
scope
;
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
std
::
unordered_set
<
std
::
string
>
parameters
;
TRTConvertValidation
validator
(
10
,
parameters
,
scope
,
1000
);
TRTConvertValidation
validator
(
10
,
parameters
,
scope
,
1000
);
validator
.
DeclInputVar
(
"
relu
-X"
,
nvinfer1
::
Dims2
(
10
,
6
));
validator
.
DeclInputVar
(
"
act
-X"
,
nvinfer1
::
Dims2
(
10
,
6
));
validator
.
DeclOutputVar
(
"
relu
-Out"
,
nvinfer1
::
Dims2
(
10
,
6
));
validator
.
DeclOutputVar
(
"
act
-Out"
,
nvinfer1
::
Dims2
(
10
,
6
));
// Prepare Op description
// Prepare Op description
framework
::
OpDesc
desc
;
framework
::
OpDesc
desc
;
desc
.
SetType
(
"relu"
);
desc
.
SetType
(
act_type
);
desc
.
SetInput
(
"X"
,
{
"
relu
-X"
});
desc
.
SetInput
(
"X"
,
{
"
act
-X"
});
desc
.
SetOutput
(
"Out"
,
{
"
relu
-Out"
});
desc
.
SetOutput
(
"Out"
,
{
"
act
-Out"
});
LOG
(
INFO
)
<<
"set OP"
;
LOG
(
INFO
)
<<
"set OP"
;
validator
.
SetOp
(
*
desc
.
Proto
());
validator
.
SetOp
(
*
desc
.
Proto
());
...
@@ -40,8 +40,16 @@ TEST(ReluOpConverter, main) {
...
@@ -40,8 +40,16 @@ TEST(ReluOpConverter, main) {
validator
.
Execute
(
5
);
validator
.
Execute
(
5
);
}
}
TEST
(
ReluOpConverter
,
main
)
{
test_activation
(
"relu"
);
}
TEST
(
SigmoidOpConverter
,
main
)
{
test_activation
(
"sigmoid"
);
}
TEST
(
TanhOpConverter
,
main
)
{
test_activation
(
"tanh"
);
}
}
// namespace tensorrt
}
// namespace tensorrt
}
// namespace inference
}
// namespace inference
}
// namespace paddle
}
// namespace paddle
USE_OP
(
relu
);
USE_OP
(
relu
);
USE_OP
(
sigmoid
);
USE_OP
(
tanh
);
paddle/fluid/inference/tensorrt/convert/test_dropout_op.cc
0 → 100644
浏览文件 @
d9942cd1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
TEST
(
DropoutOpConverter
,
main
)
{
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
TRTConvertValidation
validator
(
8
,
parameters
,
scope
,
1000
);
std
::
vector
<
int
>
tensor_shape
{
8
,
10
};
validator
.
DeclInputVar
(
"dropout-X"
,
tensor_shape
,
nvinfer1
::
DimsCHW
(
10
,
1
,
1
));
validator
.
DeclOutputVar
(
"dropout-Out"
,
nvinfer1
::
DimsCHW
(
10
,
1
,
1
));
validator
.
DeclOutputVar
(
"mask-Out"
,
nvinfer1
::
DimsCHW
(
10
,
1
,
1
));
// Prepare Op description
framework
::
OpDesc
desc
;
int
is_test
=
1
;
float
dropout_prob
=
0.4
;
desc
.
SetType
(
"dropout"
);
desc
.
SetInput
(
"X"
,
{
"dropout-X"
});
desc
.
SetOutput
(
"Mask"
,
{
"mask-Out"
});
desc
.
SetOutput
(
"Out"
,
{
"dropout-Out"
});
desc
.
SetAttr
(
"is_test"
,
is_test
);
desc
.
SetAttr
(
"dropout_prob"
,
dropout_prob
);
LOG
(
INFO
)
<<
"set OP"
;
validator
.
SetOp
(
*
desc
.
Proto
());
LOG
(
INFO
)
<<
"execute"
;
std
::
unordered_set
<
std
::
string
>
neglected_output
=
{
"mask-Out"
};
validator
.
Execute
(
8
,
neglected_output
);
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_OP
(
dropout
);
paddle/fluid/memory/detail/buddy_allocator.cc
浏览文件 @
d9942cd1
...
@@ -167,6 +167,8 @@ void BuddyAllocator::Free(void* p) {
...
@@ -167,6 +167,8 @@ void BuddyAllocator::Free(void* p) {
}
}
size_t
BuddyAllocator
::
Used
()
{
return
total_used_
;
}
size_t
BuddyAllocator
::
Used
()
{
return
total_used_
;
}
size_t
BuddyAllocator
::
GetMinChunkSize
()
{
return
min_chunk_size_
;
}
size_t
BuddyAllocator
::
GetMaxChunkSize
()
{
return
max_chunk_size_
;
}
void
*
BuddyAllocator
::
SystemAlloc
(
size_t
size
)
{
void
*
BuddyAllocator
::
SystemAlloc
(
size_t
size
)
{
size_t
index
=
0
;
size_t
index
=
0
;
...
...
paddle/fluid/memory/detail/buddy_allocator.h
浏览文件 @
d9942cd1
...
@@ -42,6 +42,8 @@ class BuddyAllocator {
...
@@ -42,6 +42,8 @@ class BuddyAllocator {
void
*
Alloc
(
size_t
unaligned_size
);
void
*
Alloc
(
size_t
unaligned_size
);
void
Free
(
void
*
ptr
);
void
Free
(
void
*
ptr
);
size_t
Used
();
size_t
Used
();
size_t
GetMinChunkSize
();
size_t
GetMaxChunkSize
();
public:
public:
// Disable copy and assignment
// Disable copy and assignment
...
...
paddle/fluid/memory/malloc.cc
浏览文件 @
d9942cd1
...
@@ -119,8 +119,8 @@ void* Alloc<platform::CUDAPlace>(platform::CUDAPlace place, size_t size) {
...
@@ -119,8 +119,8 @@ void* Alloc<platform::CUDAPlace>(platform::CUDAPlace place, size_t size) {
LOG
(
WARNING
)
<<
"Cannot allocate "
<<
size
<<
" bytes in GPU "
LOG
(
WARNING
)
<<
"Cannot allocate "
<<
size
<<
" bytes in GPU "
<<
place
.
device
<<
", available "
<<
avail
<<
" bytes"
;
<<
place
.
device
<<
", available "
<<
avail
<<
" bytes"
;
LOG
(
WARNING
)
<<
"total "
<<
total
;
LOG
(
WARNING
)
<<
"total "
<<
total
;
LOG
(
WARNING
)
<<
"GpuMinChunkSize "
<<
platform
::
Gpu
MinChunkSize
();
LOG
(
WARNING
)
<<
"GpuMinChunkSize "
<<
buddy_allocator
->
Get
MinChunkSize
();
LOG
(
WARNING
)
<<
"GpuMaxChunkSize "
<<
platform
::
Gpu
MaxChunkSize
();
LOG
(
WARNING
)
<<
"GpuMaxChunkSize "
<<
buddy_allocator
->
Get
MaxChunkSize
();
LOG
(
WARNING
)
<<
"GPU memory used: "
<<
Used
<
platform
::
CUDAPlace
>
(
place
);
LOG
(
WARNING
)
<<
"GPU memory used: "
<<
Used
<
platform
::
CUDAPlace
>
(
place
);
platform
::
SetDeviceId
(
cur_dev
);
platform
::
SetDeviceId
(
cur_dev
);
}
}
...
...
paddle/fluid/operators/math/cpu_lstm_compute.cc
浏览文件 @
d9942cd1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -13,76 +10,9 @@ See the License for the specific language governing permissions and
...
@@ -13,76 +10,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/math/cpu_lstm_compute.h"
#include "paddle/fluid/operators/math/cpu_lstm_compute.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
namespace
math
{
namespace
math
{}
// namespace math
// TODO(TJ): ugly workaround, clean me
template
<
typename
T
>
void
lstm_compute_ctht
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
,
T
*
ht
)
{
// gates: W_ch, W_ih, W_fh, W_oh
vec_sigmoid
<
T
,
platform
::
jit
::
avx
>
(
24
,
gates
+
8
,
gates
+
8
);
vec_tanh
<
T
,
platform
::
jit
::
avx
>
(
8
,
gates
,
gates
);
const
T
*
i
=
gates
+
8
,
*
f
=
gates
+
16
,
*
o
=
gates
+
24
;
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
const
T
max
=
SIGMOID_THRESHOLD_MAX
;
for
(
int
d
=
0
;
d
<
8
;
++
d
)
{
// C_t = C_t-1 * fgated + cand_gated * igated
ct
[
d
]
=
ct_1
[
d
]
*
f
[
d
]
+
gates
[
d
]
*
i
[
d
];
// H_t = act_cell(C_t) * ogated
T
tmp
=
ct
[
d
]
*
2
;
tmp
=
static_cast
<
T
>
(
0
)
-
((
tmp
<
min
)
?
min
:
((
tmp
>
max
)
?
max
:
tmp
));
vec_exp
<
T
>
(
1
,
&
tmp
,
&
tmp
);
tmp
=
static_cast
<
T
>
(
2
)
/
(
static_cast
<
T
>
(
1
)
+
tmp
)
-
static_cast
<
T
>
(
1
);
ht
[
d
]
=
tmp
*
o
[
d
];
}
}
#ifdef __AVX__
namespace
detail
{
namespace
forward
{
namespace
avx
{
__m256
Sigmoid
(
const
__m256
a
);
__m256
Tanh
(
const
__m256
a
);
}
// namespace avx
}
// namespace forward
}
// namespace detail
template
<
>
void
lstm_compute_ctht
<
float
>
(
float
*
gates
,
const
float
*
ct_1
,
float
*
ct
,
float
*
ht
)
{
namespace
act
=
detail
::
forward
::
avx
;
// gates: W_ch, W_ih, W_fh, W_oh
__m256
c
,
i
,
f
,
o
;
c
=
_mm256_loadu_ps
(
gates
);
i
=
_mm256_loadu_ps
(
gates
+
8
);
f
=
_mm256_loadu_ps
(
gates
+
16
);
o
=
_mm256_loadu_ps
(
gates
+
24
);
/* C_t = C_t-1 * fgated + cand_gated * igated*/
c
=
_mm256_mul_ps
(
act
::
Tanh
(
c
),
act
::
Sigmoid
(
i
));
i
=
_mm256_loadu_ps
(
ct_1
);
f
=
_mm256_mul_ps
(
i
,
act
::
Sigmoid
(
f
));
f
=
_mm256_add_ps
(
c
,
f
);
_mm256_storeu_ps
(
ct
,
f
);
/* H_t = act_cell(C_t) * ogated */
o
=
_mm256_mul_ps
(
act
::
Tanh
(
f
),
act
::
Sigmoid
(
o
));
_mm256_storeu_ps
(
ht
,
o
);
}
#endif
template
void
lstm_compute_ctht
<
float
>(
float
*
gates
,
const
float
*
ct_1
,
float
*
ct
,
float
*
ht
);
template
void
lstm_compute_ctht
<
double
>(
double
*
gates
,
const
double
*
ct_1
,
double
*
ct
,
double
*
ht
);
}
// namespace math
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
paddle/fluid/operators/math/cpu_lstm_compute.h
浏览文件 @
d9942cd1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -14,6 +11,11 @@ limitations under the License. */
...
@@ -14,6 +11,11 @@ limitations under the License. */
#pragma once
#pragma once
#include <string>
#include <string>
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -21,7 +23,58 @@ namespace math {
...
@@ -21,7 +23,58 @@ namespace math {
// TODO(TJ): ugly workaround, clean me
// TODO(TJ): ugly workaround, clean me
template
<
typename
T
>
template
<
typename
T
>
void
lstm_compute_ctht
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
,
T
*
ht
);
void
lstm_compute_ctht
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
,
T
*
ht
)
{
// gates: W_ch, W_ih, W_fh, W_oh
vec_sigmoid
<
T
,
platform
::
jit
::
avx
>
(
24
,
gates
+
8
,
gates
+
8
);
vec_tanh
<
T
,
platform
::
jit
::
avx
>
(
8
,
gates
,
gates
);
const
T
*
i
=
gates
+
8
,
*
f
=
gates
+
16
,
*
o
=
gates
+
24
;
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
const
T
max
=
SIGMOID_THRESHOLD_MAX
;
for
(
int
d
=
0
;
d
<
8
;
++
d
)
{
// C_t = C_t-1 * fgated + cand_gated * igated
ct
[
d
]
=
ct_1
[
d
]
*
f
[
d
]
+
gates
[
d
]
*
i
[
d
];
// H_t = act_cell(C_t) * ogated
T
tmp
=
ct
[
d
]
*
2
;
tmp
=
static_cast
<
T
>
(
0
)
-
((
tmp
<
min
)
?
min
:
((
tmp
>
max
)
?
max
:
tmp
));
vec_exp
<
T
>
(
1
,
&
tmp
,
&
tmp
);
tmp
=
static_cast
<
T
>
(
2
)
/
(
static_cast
<
T
>
(
1
)
+
tmp
)
-
static_cast
<
T
>
(
1
);
ht
[
d
]
=
tmp
*
o
[
d
];
}
}
#ifdef __AVX__
namespace
detail
{
namespace
forward
{
namespace
avx
{
__m256
Sigmoid
(
const
__m256
a
);
__m256
Tanh
(
const
__m256
a
);
}
// namespace avx
}
// namespace forward
}
// namespace detail
template
<
>
void
lstm_compute_ctht
<
float
>
(
float
*
gates
,
const
float
*
ct_1
,
float
*
ct
,
float
*
ht
)
{
namespace
act
=
detail
::
forward
::
avx
;
// gates: W_ch, W_ih, W_fh, W_oh
__m256
c
,
i
,
f
,
o
;
c
=
_mm256_loadu_ps
(
gates
);
i
=
_mm256_loadu_ps
(
gates
+
8
);
f
=
_mm256_loadu_ps
(
gates
+
16
);
o
=
_mm256_loadu_ps
(
gates
+
24
);
/* C_t = C_t-1 * fgated + cand_gated * igated*/
c
=
_mm256_mul_ps
(
act
::
Tanh
(
c
),
act
::
Sigmoid
(
i
));
i
=
_mm256_loadu_ps
(
ct_1
);
f
=
_mm256_mul_ps
(
i
,
act
::
Sigmoid
(
f
));
f
=
_mm256_add_ps
(
c
,
f
);
_mm256_storeu_ps
(
ct
,
f
);
/* H_t = act_cell(C_t) * ogated */
o
=
_mm256_mul_ps
(
act
::
Tanh
(
f
),
act
::
Sigmoid
(
o
));
_mm256_storeu_ps
(
ht
,
o
);
}
#endif
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/while_op.cc
浏览文件 @
d9942cd1
...
@@ -63,7 +63,7 @@ class WhileOp : public framework::OperatorBase {
...
@@ -63,7 +63,7 @@ class WhileOp : public framework::OperatorBase {
while
(
cond
.
data
<
bool
>
()[
0
])
{
while
(
cond
.
data
<
bool
>
()[
0
])
{
auto
&
current_scope
=
scope
.
NewScope
();
auto
&
current_scope
=
scope
.
NewScope
();
step_scopes
->
push_back
(
&
current_scope
);
step_scopes
->
push_back
(
&
current_scope
);
executor
.
RunPreparedContext
(
ctx
.
get
(),
&
current_scope
,
false
);
executor
.
RunPreparedContext
(
ctx
.
get
(),
&
current_scope
,
false
,
true
,
true
);
if
(
is_test
)
{
if
(
is_test
)
{
scope
.
DeleteScope
(
&
current_scope
);
scope
.
DeleteScope
(
&
current_scope
);
}
}
...
@@ -169,7 +169,8 @@ class WhileGradOp : public framework::OperatorBase {
...
@@ -169,7 +169,8 @@ class WhileGradOp : public framework::OperatorBase {
}
}
}
}
}
}
executor
.
RunPreparedContext
(
ctx
.
get
(),
*
cur_scope_iter
,
false
);
executor
.
RunPreparedContext
(
ctx
.
get
(),
*
cur_scope_iter
,
false
,
true
,
true
);
auto
&
pg_names
=
Outputs
(
kXGRAD
);
auto
&
pg_names
=
Outputs
(
kXGRAD
);
auto
&
p_names
=
Inputs
(
kX
);
auto
&
p_names
=
Inputs
(
kX
);
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
d9942cd1
...
@@ -51,7 +51,7 @@ ENDIF()
...
@@ -51,7 +51,7 @@ ENDIF()
# memcpy depends on device_context, here add deps individually for
# memcpy depends on device_context, here add deps individually for
# avoiding cycle dependencies
# avoiding cycle dependencies
cc_library
(
device_context SRCS device_context.cc init.cc DEPS malloc
cc_library
(
device_context SRCS device_context.cc init.cc DEPS
simple_threadpool
malloc
place eigen3 stringpiece cpu_helper cpu_info framework_proto
${
GPU_CTX_DEPS
}
${
MKLDNN_CTX_DEPS
}
)
place eigen3 stringpiece cpu_helper cpu_info framework_proto
${
GPU_CTX_DEPS
}
${
MKLDNN_CTX_DEPS
}
)
nv_test
(
device_context_test SRCS device_context_test.cu DEPS device_context gpu_info
)
nv_test
(
device_context_test SRCS device_context_test.cu DEPS device_context gpu_info
)
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
d9942cd1
...
@@ -210,11 +210,14 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
...
@@ -210,11 +210,14 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
if
(
dynload
::
HasCUDNN
())
{
if
(
dynload
::
HasCUDNN
())
{
cudnn_holder_
.
reset
(
new
CudnnHolder
(
&
stream_
,
place
));
cudnn_holder_
.
reset
(
new
CudnnHolder
(
&
stream_
,
place
));
}
}
callback_manager_
.
reset
(
new
StreamCallbackManager
(
stream_
));
}
}
CUDADeviceContext
::~
CUDADeviceContext
()
{
CUDADeviceContext
::~
CUDADeviceContext
()
{
SetDeviceId
(
place_
.
device
);
SetDeviceId
(
place_
.
device
);
Wait
();
Wait
();
WaitStreamCallback
();
PADDLE_ENFORCE
(
dynload
::
cublasDestroy
(
cublas_handle_
));
PADDLE_ENFORCE
(
dynload
::
cublasDestroy
(
cublas_handle_
));
eigen_stream_
.
reset
();
eigen_stream_
.
reset
();
eigen_device_
.
reset
();
eigen_device_
.
reset
();
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
d9942cd1
...
@@ -31,6 +31,9 @@ limitations under the License. */
...
@@ -31,6 +31,9 @@ limitations under the License. */
#include "glog/logging.h"
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
#include "unsupported/Eigen/CXX11/Tensor"
#include "unsupported/Eigen/CXX11/Tensor"
namespace
paddle
{
namespace
paddle
{
...
@@ -112,6 +115,17 @@ class CUDADeviceContext : public DeviceContext {
...
@@ -112,6 +115,17 @@ class CUDADeviceContext : public DeviceContext {
PADDLE_ENFORCE
(
cudaEventRecord
(
ev
,
stream_
));
PADDLE_ENFORCE
(
cudaEventRecord
(
ev
,
stream_
));
}
}
template
<
typename
Callback
>
void
AddStreamCallback
(
Callback
&&
callback
)
const
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
callback_mtx_
);
callback_manager_
->
AddCallback
(
callback
);
}
void
WaitStreamCallback
()
const
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
callback_mtx_
);
callback_manager_
->
Wait
();
}
private:
private:
CUDAPlace
place_
;
CUDAPlace
place_
;
...
@@ -125,7 +139,12 @@ class CUDADeviceContext : public DeviceContext {
...
@@ -125,7 +139,12 @@ class CUDADeviceContext : public DeviceContext {
int
multi_process
;
int
multi_process
;
int
max_threads_per_mp
;
int
max_threads_per_mp
;
std
::
mutex
mtx_
;
mutable
std
::
mutex
mtx_
;
// This lock is only used by callback
// If we use mtx_ for StreamCallbackManager, deadlock may occur sometimes
mutable
std
::
mutex
callback_mtx_
;
std
::
unique_ptr
<
StreamCallbackManager
>
callback_manager_
;
};
};
template
<
>
template
<
>
...
...
paddle/fluid/platform/stream_callback_manager.h
0 → 100644
浏览文件 @
d9942cd1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cuda.h>
#include <cuda_runtime.h>
#include <functional>
#include <memory>
#include "ThreadPool.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
platform
{
using
StreamCallback
=
std
::
function
<
void
(
cudaStream_t
,
cudaError_t
)
>
;
class
StreamCallbackManager
;
struct
StreamCallbackContext
{
template
<
typename
Callback
>
inline
StreamCallbackContext
(
const
StreamCallbackManager
*
manager
,
Callback
&&
callback
)
:
manager_
(
manager
),
callback_
(
callback
)
{}
const
StreamCallbackManager
*
manager_
;
// do not own
StreamCallback
callback_
;
};
class
StreamCallbackManager
{
public:
explicit
inline
StreamCallbackManager
(
cudaStream_t
stream
=
nullptr
)
:
stream_
(
stream
),
thread_pool_
(
new
ThreadPool
(
1
))
{}
template
<
typename
Callback
>
inline
void
AddCallback
(
Callback
&&
callback
)
const
{
AddCallbackWithStreamAndErrorInfo
(
[
=
](
cudaStream_t
,
cudaError_t
)
{
callback
();
});
}
template
<
typename
Callback
>
inline
void
AddCallbackWithStreamAndErrorInfo
(
Callback
&&
callback
)
const
{
auto
*
stream_callback_context
=
new
StreamCallbackContext
(
this
,
callback
);
PADDLE_ENFORCE
(
cudaStreamAddCallback
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
,
0
));
}
void
Wait
()
const
{
thread_pool_
.
reset
(
new
ThreadPool
(
1
));
}
private:
const
cudaStream_t
stream_
;
mutable
std
::
unique_ptr
<
ThreadPool
>
thread_pool_
;
// cudaStreamCallback cannot call CUDA API inside, so we have to use
// thread_pool here
static
void
CUDART_CB
StreamCallbackFunc
(
cudaStream_t
stream
,
cudaError_t
status
,
void
*
user_data
)
{
auto
*
callback_context_ptr
=
reinterpret_cast
<
StreamCallbackContext
*>
(
user_data
);
callback_context_ptr
->
manager_
->
thread_pool_
->
enqueue
([
=
]()
{
std
::
unique_ptr
<
StreamCallbackContext
>
callback_context
(
callback_context_ptr
);
callback_context
->
callback_
(
stream
,
status
);
});
}
};
}
// namespace platform
}
// namespace paddle
paddle/scripts/paddle_build.sh
浏览文件 @
d9942cd1
...
@@ -716,6 +716,12 @@ function main() {
...
@@ -716,6 +716,12 @@ function main() {
build_mac
build_mac
run_mac_test
run_mac_test
;;
;;
cicheck_py35
)
cmake_gen
${
PYTHON_ABI
:-
""
}
build
run_test
assert_api_not_changed
;;
*
)
*
)
print_usage
print_usage
exit
0
exit
0
...
...
python/paddle/dataset/sentiment.py
浏览文件 @
d9942cd1
...
@@ -67,7 +67,7 @@ def get_word_dict():
...
@@ -67,7 +67,7 @@ def get_word_dict():
for
field
in
movie_reviews
.
fileids
(
category
):
for
field
in
movie_reviews
.
fileids
(
category
):
for
words
in
movie_reviews
.
words
(
field
):
for
words
in
movie_reviews
.
words
(
field
):
word_freq_dict
[
words
]
+=
1
word_freq_dict
[
words
]
+=
1
words_sort_list
=
six
.
iteritems
(
word_freq_dict
)
words_sort_list
=
list
(
six
.
iteritems
(
word_freq_dict
)
)
words_sort_list
.
sort
(
cmp
=
lambda
a
,
b
:
b
[
1
]
-
a
[
1
])
words_sort_list
.
sort
(
cmp
=
lambda
a
,
b
:
b
[
1
]
-
a
[
1
])
for
index
,
word
in
enumerate
(
words_sort_list
):
for
index
,
word
in
enumerate
(
words_sort_list
):
words_freq_sorted
.
append
((
word
[
0
],
index
))
words_freq_sorted
.
append
((
word
[
0
],
index
))
...
...
python/paddle/fluid/__init__.py
浏览文件 @
d9942cd1
...
@@ -122,7 +122,7 @@ def __bootstrap__():
...
@@ -122,7 +122,7 @@ def __bootstrap__():
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
"dist_threadpool_size"
,
'cpu_deterministic'
"dist_threadpool_size"
,
'cpu_deterministic'
,
'eager_delete_tensor_gb'
]
]
if
core
.
is_compiled_with_dist
():
if
core
.
is_compiled_with_dist
():
read_env_flags
.
append
(
'rpc_deadline'
)
read_env_flags
.
append
(
'rpc_deadline'
)
...
...
python/paddle/fluid/tests/unittests/test_desc_clone.py
浏览文件 @
d9942cd1
...
@@ -109,15 +109,20 @@ def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
...
@@ -109,15 +109,20 @@ def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
return
t
return
t
from
paddle.fluid.transpiler.details
import
op_to_code
def
operator_equal
(
a
,
b
):
def
operator_equal
(
a
,
b
):
if
op_to_code
(
a
)
!=
op_to_code
(
b
):
raise
ValueError
(
"In operator_equal not equal
\n
"
)
for
k
,
v
in
six
.
iteritems
(
a
.
__dict__
):
for
k
,
v
in
six
.
iteritems
(
a
.
__dict__
):
if
isinstance
(
v
,
fluid
.
framework
.
Program
)
or
\
if
isinstance
(
v
,
fluid
.
framework
.
Program
)
or
\
isinstance
(
v
,
fluid
.
framework
.
Block
):
isinstance
(
v
,
fluid
.
framework
.
Block
):
continue
continue
elif
isinstance
(
v
,
core
.
OpDesc
):
elif
isinstance
(
v
,
core
.
OpDesc
):
if
v
.
serialize_to_string
()
!=
b
.
__dict__
[
k
].
serialize_to_string
():
continue
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
elif
isinstance
(
v
,
collections
.
OrderedDict
):
elif
isinstance
(
v
,
collections
.
OrderedDict
):
v0
=
sorted
(
list
(
six
.
iteritems
(
v
)),
key
=
lambda
x
:
x
[
0
])
v0
=
sorted
(
list
(
six
.
iteritems
(
v
)),
key
=
lambda
x
:
x
[
0
])
...
...
python/paddle/fluid/tests/unittests/test_while_op.py
浏览文件 @
d9942cd1
#
Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
...
@@ -30,8 +30,10 @@ class TestWhileOp(unittest.TestCase):
...
@@ -30,8 +30,10 @@ class TestWhileOp(unittest.TestCase):
"d1"
,
shape
=
[
10
],
append_batch_size
=
False
,
dtype
=
'float32'
)
"d1"
,
shape
=
[
10
],
append_batch_size
=
False
,
dtype
=
'float32'
)
d2
=
layers
.
data
(
d2
=
layers
.
data
(
"d2"
,
shape
=
[
10
],
append_batch_size
=
False
,
dtype
=
'float32'
)
"d2"
,
shape
=
[
10
],
append_batch_size
=
False
,
dtype
=
'float32'
)
i
=
layers
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
)
i
=
layers
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
)
i
.
stop_gradient
=
True
i
.
stop_gradient
=
True
init
=
layers
.
zeros
(
shape
=
[
10
],
dtype
=
'float32'
)
init
=
layers
.
zeros
(
shape
=
[
10
],
dtype
=
'float32'
)
mem_array
=
layers
.
array_write
(
x
=
init
,
i
=
i
)
mem_array
=
layers
.
array_write
(
x
=
init
,
i
=
i
)
data_array
=
layers
.
array_write
(
x
=
d0
,
i
=
i
)
data_array
=
layers
.
array_write
(
x
=
d0
,
i
=
i
)
...
@@ -45,11 +47,19 @@ class TestWhileOp(unittest.TestCase):
...
@@ -45,11 +47,19 @@ class TestWhileOp(unittest.TestCase):
i
=
layers
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
)
i
=
layers
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
)
i
.
stop_gradient
=
True
i
.
stop_gradient
=
True
array_len
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
3
)
array_len
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
1
)
array_len
.
stop_gradient
=
True
array_len
.
stop_gradient
=
True
cond
=
layers
.
less_than
(
x
=
i
,
y
=
array_len
)
cond
=
layers
.
less_than
(
x
=
i
,
y
=
array_len
)
j
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
1
)
j
.
stop_gradient
=
True
array_len2
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
3
)
array_len2
.
stop_gradient
=
True
cond2
=
layers
.
less_than
(
x
=
j
,
y
=
array_len2
)
while_op
=
layers
.
While
(
cond
=
cond
)
while_op
=
layers
.
While
(
cond
=
cond
)
while_op2
=
layers
.
While
(
cond
=
cond2
)
with
while_op
.
block
():
with
while_op
.
block
():
d
=
layers
.
array_read
(
array
=
data_array
,
i
=
i
)
d
=
layers
.
array_read
(
array
=
data_array
,
i
=
i
)
prev
=
layers
.
array_read
(
array
=
mem_array
,
i
=
i
)
prev
=
layers
.
array_read
(
array
=
mem_array
,
i
=
i
)
...
@@ -59,7 +69,16 @@ class TestWhileOp(unittest.TestCase):
...
@@ -59,7 +69,16 @@ class TestWhileOp(unittest.TestCase):
layers
.
array_write
(
result
,
i
=
i
,
array
=
mem_array
)
layers
.
array_write
(
result
,
i
=
i
,
array
=
mem_array
)
layers
.
less_than
(
x
=
i
,
y
=
array_len
,
cond
=
cond
)
layers
.
less_than
(
x
=
i
,
y
=
array_len
,
cond
=
cond
)
sum_result
=
layers
.
array_read
(
array
=
mem_array
,
i
=
i
)
with
while_op2
.
block
():
d2
=
layers
.
array_read
(
array
=
data_array
,
i
=
j
)
prev2
=
layers
.
array_read
(
array
=
mem_array
,
i
=
j
)
result2
=
layers
.
sums
(
input
=
[
d2
,
prev2
])
j
=
layers
.
increment
(
x
=
j
,
in_place
=
True
)
layers
.
array_write
(
result2
,
i
=
j
,
array
=
mem_array
)
layers
.
less_than
(
x
=
j
,
y
=
array_len2
,
cond
=
cond2
)
sum_result
=
layers
.
array_read
(
array
=
mem_array
,
i
=
j
)
loss
=
layers
.
mean
(
sum_result
)
loss
=
layers
.
mean
(
sum_result
)
append_backward
(
loss
)
append_backward
(
loss
)
...
...
python/paddle/fluid/transpiler/details/program_utils.py
浏览文件 @
d9942cd1
...
@@ -113,27 +113,32 @@ def op_to_code(op):
...
@@ -113,27 +113,32 @@ def op_to_code(op):
inputs_str
+=
", "
inputs_str
+=
", "
inputs_str
+=
"}"
inputs_str
+=
"}"
attr_names
=
sorted
(
op
.
attr_names
)
attrs_str
=
""
attrs_str
=
""
for
i
in
range
(
0
,
len
(
op
.
attr_names
)):
for
i
in
range
(
0
,
len
(
attr_names
)):
name
=
op
.
attr_names
[
i
]
name
=
attr_names
[
i
]
attr_type
=
op
.
desc
.
attr_type
(
name
)
attr_type
=
op
.
desc
.
attr_type
(
name
)
if
attr_type
==
core
.
AttrType
.
BLOCK
:
if
attr_type
==
core
.
AttrType
.
BLOCK
:
a
=
"{name} = block[{value}]"
.
format
(
a
=
"{name} = block[{value}]"
.
format
(
name
=
name
,
type
=
attr_type
,
value
=
op
.
block_attr_id
(
name
))
name
=
name
,
type
=
attr_type
,
value
=
op
.
block_attr_id
(
name
))
attrs_str
+=
a
attrs_str
+=
a
if
i
!=
len
(
attr_names
)
-
1
:
attrs_str
+=
", "
continue
continue
if
attr_type
==
core
.
AttrType
.
BLOCKS
:
if
attr_type
==
core
.
AttrType
.
BLOCKS
:
a
=
"{name} = blocks{value}"
.
format
(
a
=
"{name} = blocks{value}"
.
format
(
name
=
name
,
type
=
attr_type
,
value
=
op
.
blocks_attr_ids
(
name
))
name
=
name
,
type
=
attr_type
,
value
=
op
.
blocks_attr_ids
(
name
))
attrs_str
+=
a
attrs_str
+=
a
if
i
!=
len
(
attr_names
)
-
1
:
attrs_str
+=
", "
continue
continue
a
=
"{name} = {value}"
.
format
(
a
=
"{name} = {value}"
.
format
(
name
=
name
,
type
=
attr_type
,
value
=
op
.
desc
.
attr
(
name
))
name
=
name
,
type
=
attr_type
,
value
=
op
.
desc
.
attr
(
name
))
attrs_str
+=
a
attrs_str
+=
a
if
i
!=
len
(
op
.
attr_names
)
-
1
:
if
i
!=
len
(
attr_names
)
-
1
:
attrs_str
+=
", "
attrs_str
+=
", "
if
outputs_str
!=
"{}"
:
if
outputs_str
!=
"{}"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录