提交 d95d69b6 编写于 作者: D dengkaipeng

Merge branch 'master' of https://github.com/PaddlePaddle/PaddleDetection into add_ppyolo_mbv3

English | [简体中文](README_cn.md)
Documentation:[https://paddledetection.readthedocs.io](https://paddledetection.readthedocs.io)
# PaddleDetection
PaddleDetection is an end-to-end object detection development kit based on PaddlePaddle, which
aims to help developers in the whole development of training models, optimizing performance and
inference speed, and deploying models. PaddleDetection provides varied object detection architectures
in modular design, and wealthy data augmentation methods, network components, loss functions, etc.
PaddleDetection supported practical projects such as industrial quality inspection, remote sensing
image object detection, and automatic inspection with its practical features such as model compression
and multi-platform deployment.
[PP-YOLO](https://arxiv.org/abs/2007.12099), which is faster and has higer performance than YOLOv4,
has been released, it reached mAP(0.5:0.95) as 45.2% on COCO test2019 dataset and 72.9 FPS on single
Test V100. Please refer to [PP-YOLO](configs/ppyolo/README.md) for details.
**Now all models in PaddleDetection require PaddlePaddle version 1.8 or higher, or suitable develop version.**
<div align="center">
<img src="docs/images/000000570688.jpg" />
</div>
## Introduction
Features:
- Rich models:
PaddleDetection provides rich of models, including 100+ pre-trained models
such as object detection, instance segmentation, face detection etc. It covers
the champion models, the practical detection models for cloud and edge device.
- Production Ready:
Key operations are implemented in C++ and CUDA, together with PaddlePaddle's
highly efficient inference engine, enables easy deployment in server environments.
- Highly Flexible:
Components are designed to be modular. Model architectures, as well as data
preprocess pipelines, can be easily customized with simple configuration
changes.
- Performance Optimized:
With the help of the underlying PaddlePaddle framework, faster training and
reduced GPU memory footprint is achieved. Notably, YOLOv3 training is
much faster compared to other frameworks. Another example is Mask-RCNN
(ResNet50), we managed to fit up to 4 images per GPU (Tesla V100 16GB) during
multi-GPU training.
Supported Architectures:
| | ResNet | ResNet-vd <sup>[1](#vd)</sup> | ResNeXt-vd | SENet | MobileNet | HRNet | Res2Net |
| ------------------- | :----: | ----------------------------: | :--------: | :---: | :-------: |:------:|:-----: |
| Faster R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Faster R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ |
| Mask R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Mask R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ |
| Cascade Faster-RCNN | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ |
| Cascade Mask-RCNN | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| Libra R-CNN | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
| RetinaNet | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| YOLOv3 | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ |
| SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
| BlazeFace | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| Faceboxes | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
<a name="vd">[1]</a> [ResNet-vd](https://arxiv.org/pdf/1812.01187) models offer much improved accuracy with negligible performance cost.
**NOTE:** ✓ for config file and pretrain model provided in [Model Zoo](docs/MODEL_ZOO.md), ✗ for not provided but is supported generally.
More models:
- EfficientDet
- FCOS
- CornerNet-Squeeze
- YOLOv4
- PP-YOLO
More Backbones:
- DarkNet
- VGG
- GCNet
- CBNet
Advanced Features:
- [x] **Synchronized Batch Norm**
- [x] **Group Norm**
- [x] **Modulated Deformable Convolution**
- [x] **Deformable PSRoI Pooling**
- [x] **Non-local and GCNet**
**NOTE:** Synchronized batch normalization can only be used on multiple GPU devices, can not be used on CPU devices or single GPU device.
The following is the relationship between COCO mAP and FPS on Tesla V100 of representative models of each architectures and backbones.
<div align="center">
<img src="docs/images/map_fps.png" width=800 />
</div>
**NOTE:**
- `CBResNet` stands for `Cascade-Faster-RCNN-CBResNet200vd-FPN`, which has highest mAP on COCO as 53.3% in PaddleDetection models
- `Cascade-Faster-RCNN` stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8%
- The enhanced `YOLOv3-ResNet50vd-DCN` is 10.6 absolute percentage points higher than paper on COCO mAP, and inference speed is nearly 70% faster than the darknet framework
- All these models can be get in [Model Zoo](#Model-Zoo)
The following is the relationship between COCO mAP and FPS on Tesla V100 of SOTA object detecters and PP-YOLO, which is faster and has better performance than YOLOv4, and reached mAP(0.5:0.95) as 45.2% on COCO test2019 dataset and 72.9 FPS on single Test V100. Please refer to [PP-YOLO](configs/ppyolo/README.md) for details.
<div align="center">
<img src="docs/images/ppyolo_map_fps.png" width=600 />
</div>
## Tutorials
### Get Started
- [Installation guide](docs/tutorials/INSTALL.md)
- [Quick start on small dataset](docs/tutorials/QUICK_STARTED.md)
- [Train/Evaluation/Inference](docs/tutorials/GETTING_STARTED.md)
- [How to train a custom dataset](docs/tutorials/Custom_DataSet.md)
- [FAQ](docs/FAQ.md)
### Advanced Tutorial
- [Guide to preprocess pipeline and dataset definition](docs/advanced_tutorials/READER.md)
- [Models technical](docs/advanced_tutorials/MODEL_TECHNICAL.md)
- [Transfer learning document](docs/advanced_tutorials/TRANSFER_LEARNING.md)
- [Parameter configuration](docs/advanced_tutorials/config_doc):
- [Introduction to the configuration workflow](docs/advanced_tutorials/config_doc/CONFIG.md)
- [Parameter configuration for RCNN model](docs/advanced_tutorials/config_doc/RCNN_PARAMS_DOC.md)
- [IPython Notebook demo](demo/mask_rcnn_demo.ipynb)
- [Model compression](slim)
- [Model compression benchmark](slim)
- [Quantization](slim/quantization)
- [Model pruning](slim/prune)
- [Model distillation](slim/distillation)
- [Neural Architecture Search](slim/nas)
- [Deployment](deploy)
- [Export model for inference](docs/advanced_tutorials/deploy/EXPORT_MODEL.md)
- [Python inference](deploy/python)
- [C++ inference](deploy/cpp)
- [Inference benchmark](docs/advanced_tutorials/deploy/BENCHMARK_INFER_cn.md)
## Model Zoo
- Pretrained models are available in the [PaddleDetection model zoo](docs/MODEL_ZOO.md).
- [Mobile models](configs/mobile/README.md)
- [Anchor free models](configs/anchor_free/README.md)
- [Face detection models](docs/featured_model/FACE_DETECTION_en.md)
- [Pretrained models for pedestrian detection](docs/featured_model/CONTRIB.md)
- [Pretrained models for vehicle detection](docs/featured_model/CONTRIB.md)
- [YOLOv3 enhanced model](docs/featured_model/YOLOv3_ENHANCEMENT.md): Compared to MAP of 33.0% in paper, enhanced YOLOv3 reaches the MAP of 43.6%, and inference speed is improved as well
- [PP-YOLO](configs/ppyolo/README.md): PP-YOLO reeached mAP as 45.3% on COCO dataset,and 72.9 FPS on single Tesla V100
- [Objects365 2019 Challenge champion model](docs/featured_model/champion_model/CACascadeRCNN.md)
- [Best single model of Open Images 2019-Object Detction](docs/featured_model/champion_model/OIDV5_BASELINE_MODEL.md)
- [Practical Server-side detection method](configs/rcnn_enhance/README_en.md): Inference speed on single V100 GPU can reach 20FPS when COCO mAP is 47.8%.
- [Large-scale practical object detection models](docs/featured_model/LARGE_SCALE_DET_MODEL_en.md): Large-scale practical server-side detection pretrained models with 676 categories are provided for most application scenarios, which can be used not only for direct inference but also finetuning on other datasets.
## License
PaddleDetection is released under the [Apache 2.0 license](LICENSE).
## Updates
v0.4.0 was released at `05/2020`, add PP-YOLO, TTFNet, HTC, ACFPN, etc. And add BlaceFace face landmark detection model, add a series of optimized SSDLite models on mobile side, add data augmentations GridMask and RandomErasing, add Matrix NMS and EMA training, and improved ease of use, fix many known bugs, etc.
Please refer to [版本更新文档](docs/CHANGELOG.md) for details.
## Contributing
Contributions are highly welcomed and we would really appreciate your feedback!!
README_cn.md
\ No newline at end of file
简体中文 | [English](README.md)
简体中文 | [English](README_en.md)
文档:[https://paddledetection.readthedocs.io](https://paddledetection.readthedocs.io)
......
English | [简体中文](README_cn.md)
Documentation:[https://paddledetection.readthedocs.io](https://paddledetection.readthedocs.io)
# PaddleDetection
PaddleDetection is an end-to-end object detection development kit based on PaddlePaddle, which
aims to help developers in the whole development of training models, optimizing performance and
inference speed, and deploying models. PaddleDetection provides varied object detection architectures
in modular design, and wealthy data augmentation methods, network components, loss functions, etc.
PaddleDetection supported practical projects such as industrial quality inspection, remote sensing
image object detection, and automatic inspection with its practical features such as model compression
and multi-platform deployment.
[PP-YOLO](https://arxiv.org/abs/2007.12099), which is faster and has higer performance than YOLOv4,
has been released, it reached mAP(0.5:0.95) as 45.2% on COCO test2019 dataset and 72.9 FPS on single
Test V100. Please refer to [PP-YOLO](configs/ppyolo/README.md) for details.
**Now all models in PaddleDetection require PaddlePaddle version 1.8 or higher, or suitable develop version.**
<div align="center">
<img src="docs/images/000000570688.jpg" />
</div>
## Introduction
Features:
- Rich models:
PaddleDetection provides rich of models, including 100+ pre-trained models
such as object detection, instance segmentation, face detection etc. It covers
the champion models, the practical detection models for cloud and edge device.
- Production Ready:
Key operations are implemented in C++ and CUDA, together with PaddlePaddle's
highly efficient inference engine, enables easy deployment in server environments.
- Highly Flexible:
Components are designed to be modular. Model architectures, as well as data
preprocess pipelines, can be easily customized with simple configuration
changes.
- Performance Optimized:
With the help of the underlying PaddlePaddle framework, faster training and
reduced GPU memory footprint is achieved. Notably, YOLOv3 training is
much faster compared to other frameworks. Another example is Mask-RCNN
(ResNet50), we managed to fit up to 4 images per GPU (Tesla V100 16GB) during
multi-GPU training.
Supported Architectures:
| | ResNet | ResNet-vd <sup>[1](#vd)</sup> | ResNeXt-vd | SENet | MobileNet | HRNet | Res2Net |
| ------------------- | :----: | ----------------------------: | :--------: | :---: | :-------: |:------:|:-----: |
| Faster R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Faster R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ |
| Mask R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Mask R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ |
| Cascade Faster-RCNN | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ |
| Cascade Mask-RCNN | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| Libra R-CNN | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
| RetinaNet | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| YOLOv3 | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ |
| SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
| BlazeFace | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| Faceboxes | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
<a name="vd">[1]</a> [ResNet-vd](https://arxiv.org/pdf/1812.01187) models offer much improved accuracy with negligible performance cost.
**NOTE:** ✓ for config file and pretrain model provided in [Model Zoo](docs/MODEL_ZOO.md), ✗ for not provided but is supported generally.
More models:
- EfficientDet
- FCOS
- CornerNet-Squeeze
- YOLOv4
- PP-YOLO
More Backbones:
- DarkNet
- VGG
- GCNet
- CBNet
Advanced Features:
- [x] **Synchronized Batch Norm**
- [x] **Group Norm**
- [x] **Modulated Deformable Convolution**
- [x] **Deformable PSRoI Pooling**
- [x] **Non-local and GCNet**
**NOTE:** Synchronized batch normalization can only be used on multiple GPU devices, can not be used on CPU devices or single GPU device.
The following is the relationship between COCO mAP and FPS on Tesla V100 of representative models of each architectures and backbones.
<div align="center">
<img src="docs/images/map_fps.png" width=800 />
</div>
**NOTE:**
- `CBResNet` stands for `Cascade-Faster-RCNN-CBResNet200vd-FPN`, which has highest mAP on COCO as 53.3% in PaddleDetection models
- `Cascade-Faster-RCNN` stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8%
- The enhanced `YOLOv3-ResNet50vd-DCN` is 10.6 absolute percentage points higher than paper on COCO mAP, and inference speed is nearly 70% faster than the darknet framework
- All these models can be get in [Model Zoo](#Model-Zoo)
The following is the relationship between COCO mAP and FPS on Tesla V100 of SOTA object detecters and PP-YOLO, which is faster and has better performance than YOLOv4, and reached mAP(0.5:0.95) as 45.2% on COCO test2019 dataset and 72.9 FPS on single Test V100. Please refer to [PP-YOLO](configs/ppyolo/README.md) for details.
<div align="center">
<img src="docs/images/ppyolo_map_fps.png" width=600 />
</div>
## Tutorials
### Get Started
- [Installation guide](docs/tutorials/INSTALL.md)
- [Quick start on small dataset](docs/tutorials/QUICK_STARTED.md)
- [Train/Evaluation/Inference](docs/tutorials/GETTING_STARTED.md)
- [How to train a custom dataset](docs/tutorials/Custom_DataSet.md)
- [FAQ](docs/FAQ.md)
### Advanced Tutorial
- [Guide to preprocess pipeline and dataset definition](docs/advanced_tutorials/READER.md)
- [Models technical](docs/advanced_tutorials/MODEL_TECHNICAL.md)
- [Transfer learning document](docs/advanced_tutorials/TRANSFER_LEARNING.md)
- [Parameter configuration](docs/advanced_tutorials/config_doc):
- [Introduction to the configuration workflow](docs/advanced_tutorials/config_doc/CONFIG.md)
- [Parameter configuration for RCNN model](docs/advanced_tutorials/config_doc/RCNN_PARAMS_DOC.md)
- [IPython Notebook demo](demo/mask_rcnn_demo.ipynb)
- [Model compression](slim)
- [Model compression benchmark](slim)
- [Quantization](slim/quantization)
- [Model pruning](slim/prune)
- [Model distillation](slim/distillation)
- [Neural Architecture Search](slim/nas)
- [Deployment](deploy)
- [Export model for inference](docs/advanced_tutorials/deploy/EXPORT_MODEL.md)
- [Python inference](deploy/python)
- [C++ inference](deploy/cpp)
- [Inference benchmark](docs/advanced_tutorials/deploy/BENCHMARK_INFER_cn.md)
## Model Zoo
- Pretrained models are available in the [PaddleDetection model zoo](docs/MODEL_ZOO.md).
- [Mobile models](configs/mobile/README.md)
- [Anchor free models](configs/anchor_free/README.md)
- [Face detection models](docs/featured_model/FACE_DETECTION_en.md)
- [Pretrained models for pedestrian detection](docs/featured_model/CONTRIB.md)
- [Pretrained models for vehicle detection](docs/featured_model/CONTRIB.md)
- [YOLOv3 enhanced model](docs/featured_model/YOLOv3_ENHANCEMENT.md): Compared to MAP of 33.0% in paper, enhanced YOLOv3 reaches the MAP of 43.6%, and inference speed is improved as well
- [PP-YOLO](configs/ppyolo/README.md): PP-YOLO reeached mAP as 45.3% on COCO dataset,and 72.9 FPS on single Tesla V100
- [Objects365 2019 Challenge champion model](docs/featured_model/champion_model/CACascadeRCNN.md)
- [Best single model of Open Images 2019-Object Detction](docs/featured_model/champion_model/OIDV5_BASELINE_MODEL.md)
- [Practical Server-side detection method](configs/rcnn_enhance/README_en.md): Inference speed on single V100 GPU can reach 20FPS when COCO mAP is 47.8%.
- [Large-scale practical object detection models](docs/featured_model/LARGE_SCALE_DET_MODEL_en.md): Large-scale practical server-side detection pretrained models with 676 categories are provided for most application scenarios, which can be used not only for direct inference but also finetuning on other datasets.
## License
PaddleDetection is released under the [Apache 2.0 license](LICENSE).
## Updates
v0.4.0 was released at `05/2020`, add PP-YOLO, TTFNet, HTC, ACFPN, etc. And add BlaceFace face landmark detection model, add a series of optimized SSDLite models on mobile side, add data augmentations GridMask and RandomErasing, add Matrix NMS and EMA training, and improved ease of use, fix many known bugs, etc.
Please refer to [版本更新文档](docs/CHANGELOG.md) for details.
## Contributing
Contributions are highly welcomed and we would really appreciate your feedback!!
......@@ -40,11 +40,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
......
......@@ -44,7 +44,6 @@ YOLOv3Head:
drop_block: true
YOLOv3Loss:
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
use_fine_grained_loss: true
......
......@@ -42,11 +42,6 @@ YOLOv3Head:
drop_block: true
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
use_fine_grained_loss: true
......
......@@ -43,11 +43,6 @@ YOLOv3Head:
keep_prob: 0.94
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
use_fine_grained_loss: true
......
......@@ -41,11 +41,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
use_fine_grained_loss: true
......
......@@ -88,7 +88,7 @@ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train.py -c configs/ppyolo/ppy
optional: Run `tools/anchor_cluster.py` to get anchors suitable for your dataset, and modify the anchor setting in `configs/ppyolo/ppyolo.yml`.
``` bash
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -m v2 -i 1000
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i 1000
```
### 2. Evaluation
......
......@@ -85,9 +85,9 @@ PP-YOLO从如下方面优化和提升YOLOv3模型的精度和速度:
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train.py -c configs/ppyolo/ppyolo.yml --eval
```
可选:在训练之前使用tools/anchor_cluster.py得到适用于你的数据集的anchor,并修改configs/ppyolo/ppyolo.yml中的anchor设置
可选:在训练之前使用`tools/anchor_cluster.py`得到适用于你的数据集的anchor,并修改`configs/ppyolo/ppyolo.yml`中的anchor设置
```bash
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -m v2 -i 1000
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i 1000
```
### 2. 评估
......
......@@ -44,7 +44,6 @@ YOLOv3Head:
drop_block: true
YOLOv3Loss:
batch_size: 24
ignore_thresh: 0.7
scale_x_y: 1.05
label_smooth: false
......
......@@ -44,7 +44,6 @@ YOLOv3Head:
drop_block: true
YOLOv3Loss:
batch_size: 24
ignore_thresh: 0.7
scale_x_y: 1.05
label_smooth: false
......
......@@ -39,7 +39,6 @@ YOLOv3Head:
drop_block: true
YOLOv3Loss:
batch_size: 32
ignore_thresh: 0.7
scale_x_y: 1.05
label_smooth: false
......
......@@ -47,7 +47,6 @@ YOLOv3Head:
drop_block: true
YOLOv3Loss:
batch_size: 24
ignore_thresh: 0.7
scale_x_y: 1.05
label_smooth: false
......
......@@ -35,11 +35,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: true
......
......@@ -36,11 +36,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
......
......@@ -36,7 +36,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
iou_loss: DiouLossYolo
......
......@@ -36,11 +36,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: true
......
......@@ -38,11 +38,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: true
......
......@@ -37,11 +37,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
......
......@@ -38,11 +38,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
......
......@@ -38,11 +38,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: true
......
......@@ -39,11 +39,6 @@ YOLOv3Head:
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
......
......@@ -35,11 +35,6 @@ YOLOv4Head:
scale_x_y: [1.2, 1.1, 1.05]
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 4
ignore_thresh: 0.7
label_smooth: true
downsample: [8,16,32]
......
......@@ -34,11 +34,6 @@ YOLOv4Head:
scale_x_y: [1.2, 1.1, 1.05]
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: true
downsample: [8,16,32]
......
......@@ -34,11 +34,6 @@ YOLOv4Head:
scale_x_y: [1.2, 1.1, 1.05]
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 4
ignore_thresh: 0.7
label_smooth: true
downsample: [8,16,32]
......
# PaddleDetection 预测部署
`PaddleDetection`目前支持使用`Python``C++`部署在`Windows``Linux` 上运行。
`PaddleDetection`目前支持:
- 使用`Python``C++`部署在`Windows``Linux` 上运行
- [在线服务化部署](./serving/README.md)
- [移动端部署](https://github.com/PaddlePaddle/Paddle-Lite-Demo)
## 模型导出
训练得到一个满足要求的模型后,如果想要将该模型接入到C++服务器端预测库或移动端预测库,需要通过`tools/export_model.py`导出该模型。
......@@ -20,4 +23,5 @@ yolov3_darknet # 模型目录
## 预测部署
- [1. Python预测(支持 Linux 和 Windows)](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/python)
- [2. C++预测(支持 Linux 和 Windows)](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/cpp)
- [3. 移动端部署参考Paddle-Lite文档](https://paddle-lite.readthedocs.io/zh/latest/)
- [3. 在线服务化部署](./serving/README.md)
- [4. 移动端部署](https://github.com/PaddlePaddle/Paddle-Lite-Demo)
# 服务端预测部署
`PaddleDetection`训练出来的模型可以使用[Serving](https://github.com/PaddlePaddle/Serving) 部署在服务端。
本教程以在路标数据集[roadsign_voc](https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar) 使用`configs/yolov3_mobilenet_v1_roadsign.yml`算法训练的模型进行部署。
预训练模型权重文件为[yolov3_mobilenet_v1_roadsign.pdparams](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_roadsign.pdparams)
## 1. 首先验证模型
```
python tools/infer.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_roadsign.pdparams --infer_img=demo/road554.png
```
## 2. 安装 paddle serving
```
# 安装 paddle-serving-client
pip install paddle-serving-client -i https://mirror.baidu.com/pypi/simple
# 安装 paddle-serving-server
pip install paddle-serving-server -i https://mirror.baidu.com/pypi/simple
# 安装 paddle-serving-server-gpu
pip install paddle-serving-server-gpu -i https://mirror.baidu.com/pypi/simple
```
## 3. 导出模型
PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/advanced_tutorials/deploy/EXPORT_MODEL.md)
```
python tools/export_serving_model.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_roadsign.pdparams --output_dir=./inference_model
```
以上命令会在./inference_model文件夹下生成一个`yolov3_mobilenet_v1_roadsign`文件夹:
```
inference_model
│ ├── yolov3_mobilenet_v1_roadsign
│ │ ├── infer_cfg.yml
│ │ ├── serving_client
│ │ │ ├── serving_client_conf.prototxt
│ │ │ ├── serving_client_conf.stream.prototxt
│ │ ├── serving_server
│ │ │ ├── conv1_bn_mean
│ │ │ ├── conv1_bn_offset
│ │ │ ├── conv1_bn_scale
│ │ │ ├── ...
```
`serving_client`文件夹下`serving_client_conf.prototxt`详细说明了模型输入输出信息
`serving_client_conf.prototxt`文件内容为:
```
feed_var {
name: "image"
alias_name: "image"
is_lod_tensor: false
feed_type: 1
shape: 3
shape: 608
shape: 608
}
feed_var {
name: "im_size"
alias_name: "im_size"
is_lod_tensor: false
feed_type: 2
shape: 2
}
fetch_var {
name: "multiclass_nms_0.tmp_0"
alias_name: "multiclass_nms_0.tmp_0"
is_lod_tensor: true
fetch_type: 1
shape: -1
}
```
## 4. 启动PaddleServing服务
```
cd inference_model/yolov3_mobilenet_v1_roadsign/
# GPU
python -m paddle_serving_server_gpu.serve --model serving_server --port 9393 --gpu_ids 0
# CPU
python -m paddle_serving_server.serve --model serving_server --port 9393
```
## 5. 测试部署的服务
准备`label_list.txt`文件
```
# 进入到导出模型文件夹
cd inference_model/yolov3_mobilenet_v1_roadsign/
# 将数据集对应的label_list.txt文件拷贝到当前文件夹下
cp ../../dataset/roadsign_voc/label_list.txt .
```
设置`prototxt`文件路径为`serving_client/serving_client_conf.prototxt`
设置`fetch``fetch=["multiclass_nms_0.tmp_0"])`
测试
```
# 进入目录
cd inference_model/yolov3_mobilenet_v1_roadsign/
# 测试代码 test_client.py 会自动创建output文件夹,并在output下生成`bbox.json`和`road554.png`两个文件
python ../../deploy/serving/test_client.py ../../demo/road554.png
```
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = Sequential([
File2Image(), BGR2RGB(), Resize(
(608, 608), interpolation=cv2.INTER_LINEAR), Div(255.0), Transpose(
(2, 0, 1))
])
postprocess = RCNNPostprocess("label_list.txt", "output", [608, 608])
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9393'])
im = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_size": np.array(list(im.shape[1:])),
},
fetch=["multiclass_nms_0.tmp_0"])
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)
......@@ -6,8 +6,9 @@
- [将数据集转换为VOC格式](#方式二将数据集转换为VOC格式)
- [添加新数据源](#方式三添加新数据源)
- [2.选择模型](#2选择模型)
- [3.修改参数配置](#3修改参数配置)
- [4.开始训练与部署](#4开始训练与部署)
- [3.生成Anchor](#3生成Anchor)
- [4.修改参数配置](#4修改参数配置)
- [5.开始训练与部署](#5开始训练与部署)
- [附:一个自定义数据集demo](#附一个自定义数据集demo)
## 1.准备数据
......@@ -97,8 +98,23 @@ PaddleDetection中提供了丰富的模型库,具体可在[模型库](../MODEL
同时也可以尝试PaddleDetection中开发的[YOLOv3增强模型](../featured_model/YOLOv3_ENHANCEMENT.md)[YOLOv4模型](../featured_model/YOLO_V4.md)[Anchor Free模型](../featured_model/ANCHOR_FREE_DETECTION.md)等。
## 3.修改参数配置
## 3.生成Anchor
在yolo系列模型中,可以运行`tools/anchor_cluster.py`来得到适用于你的数据集Anchor,使用方法如下:
``` bash
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i 1000
```
目前`tools/anchor_cluster.py`支持的主要参数配置如下表所示:
| 参数 | 用途 | 默认值 | 备注 |
|:------:|:------:|:------:|:------:|
| -c/--config | 模型的配置文件 | 无默认值 | 必须指定 |
| -n/--n | 聚类的簇数 | 9 | Anchor的数目 |
| -s/--size | 图片的输入尺寸 | None | 若指定,则使用指定的尺寸,如果不指定, 则尝试从配置文件中读取图片尺寸 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2/v5的聚类算法 |
| -i/--iters | kmeans聚类算法的迭代次数 | 1000 | kmeans算法收敛或者达到迭代次数后终止 |
| -gi/--gen_iters | 遗传算法的迭代次数 | 1000 | 该参数只用于yolov5的Anchor聚类算法 |
| -t/--thresh| Anchor尺度的阈值 | 0.25 | 该参数只用于yolov5的Anchor聚类算法 |
## 4.修改参数配置
选择好模型后,需要在`configs`目录中找到对应的配置文件,为了适配在自定义数据集上训练,需要对参数配置做一些修改:
......@@ -133,7 +149,7 @@ PaddleDetection中提供了丰富的模型库,具体可在[模型库](../MODEL
- 预训练模型配置:通过在yaml配置文件中的`pretrain_weights: path/to/weights`参数可以配置路径,可以是链接或权重文件路径。可直接沿用配置文件中给出的在ImageNet数据集上的预训练模型。同时我们支持训练在COCO或Obj365数据集上的模型权重作为预训练模型,做迁移学习,详情可参考[迁移学习文档](../advanced_tutorials/TRANSFER_LEARNING_cn.md)
## 4.开始训练与部署
## 5.开始训练与部署
- 参数配置完成后,就可以开始训练模型了,具体可参考[训练/评估/预测](GETTING_STARTED_cn.md)入门文档。
- 训练测试完成后,根据需要可以进行模型部署:首先需要导出可预测的模型,可参考[导出模型教程](../advanced_tutorials/deploy/EXPORT_MODEL.md);导出模型后就可以进行[C++预测部署](../advanced_tutorials/deploy/DEPLOY_CPP.md)或者[python端预测部署](../advanced_tutorials/deploy/DEPLOY_PY.md)
......
......@@ -97,6 +97,15 @@ def load_config(file_path):
del cfg[READER_KEY]
merge_config(cfg)
# NOTE: training batch size defined only in TrainReader, sychornized
# batch size config to global, models can get batch size config
# from global config when building model.
# batch size in evaluation or inference can also be added here
if 'TrainReader' in global_config:
global_config['train_batch_size'] = global_config['TrainReader'][
'batch_size']
return global_config
......
......@@ -32,17 +32,17 @@ class YOLOv3Loss(object):
Combined loss for YOLOv3 network
Args:
batch_size (int): training batch size
train_batch_size (int): training batch size
ignore_thresh (float): threshold to ignore confidence loss
label_smooth (bool): whether to use label smoothing
use_fine_grained_loss (bool): whether use fine grained YOLOv3 loss
instead of fluid.layers.yolov3_loss
"""
__inject__ = ['iou_loss', 'iou_aware_loss']
__shared__ = ['use_fine_grained_loss']
__shared__ = ['use_fine_grained_loss', 'train_batch_size']
def __init__(self,
batch_size=8,
train_batch_size=8,
ignore_thresh=0.7,
label_smooth=True,
use_fine_grained_loss=False,
......@@ -51,7 +51,7 @@ class YOLOv3Loss(object):
downsample=[32, 16, 8],
scale_x_y=1.,
match_score=False):
self._batch_size = batch_size
self._train_batch_size = train_batch_size
self._ignore_thresh = ignore_thresh
self._label_smooth = label_smooth
self._use_fine_grained_loss = use_fine_grained_loss
......@@ -65,7 +65,7 @@ class YOLOv3Loss(object):
anchor_masks, mask_anchors, num_classes, prefix_name):
if self._use_fine_grained_loss:
return self._get_fine_grained_loss(
outputs, targets, gt_box, self._batch_size, num_classes,
outputs, targets, gt_box, self._train_batch_size, num_classes,
mask_anchors, self._ignore_thresh)
else:
losses = []
......@@ -95,7 +95,7 @@ class YOLOv3Loss(object):
outputs,
targets,
gt_box,
batch_size,
train_batch_size,
num_classes,
mask_anchors,
ignore_thresh,
......@@ -108,7 +108,7 @@ class YOLOv3Loss(object):
targets ([Variables]): List of Variables, The targets for yolo
loss calculatation.
gt_box (Variable): The ground-truth boudding boxes.
batch_size (int): The training batch size
train_batch_size (int): The training batch size
num_classes (int): class num of dataset
mask_anchors ([[float]]): list of anchors in each output layer
ignore_thresh (float): prediction bbox overlap any gt_box greater
......@@ -171,7 +171,7 @@ class YOLOv3Loss(object):
loss_h = fluid.layers.reduce_sum(loss_h, dim=[1, 2, 3])
if self._iou_loss is not None:
loss_iou = self._iou_loss(x, y, w, h, tx, ty, tw, th, anchors,
downsample, self._batch_size,
downsample, self._train_batch_size,
scale_x_y)
loss_iou = loss_iou * tscale_tobj
loss_iou = fluid.layers.reduce_sum(loss_iou, dim=[1, 2, 3])
......@@ -180,14 +180,14 @@ class YOLOv3Loss(object):
if self._iou_aware_loss is not None:
loss_iou_aware = self._iou_aware_loss(
ioup, x, y, w, h, tx, ty, tw, th, anchors, downsample,
self._batch_size, scale_x_y)
self._train_batch_size, scale_x_y)
loss_iou_aware = loss_iou_aware * tobj
loss_iou_aware = fluid.layers.reduce_sum(
loss_iou_aware, dim=[1, 2, 3])
loss_iou_awares.append(fluid.layers.reduce_mean(loss_iou_aware))
loss_obj_pos, loss_obj_neg = self._calc_obj_loss(
output, obj, tobj, gt_box, self._batch_size, anchors,
output, obj, tobj, gt_box, self._train_batch_size, anchors,
num_classes, downsample, self._ignore_thresh, scale_x_y)
loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls)
......
......@@ -107,8 +107,8 @@ def bbox_eval(results,
logger.info("Accumulating evaluatation results...")
detection_map.accumulate()
map_stat = 100. * detection_map.get_map()
logger.info("mAP({:.2f}, {}) = {:.2f}".format(overlap_thresh, map_type,
map_stat))
logger.info("mAP({:.2f}, {}) = {:.2f}%".format(overlap_thresh, map_type,
map_stat))
return map_stat
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册