提交 d7b20584 编写于 作者: C Cao Ying 提交者: GitHub

Merge pull request #3845 from lcy-seso/rename_mse_to_square_error

rename mse_cost into square_error_cost.
......@@ -434,9 +434,9 @@ lambda_cost
.. autoclass:: paddle.v2.layer.lambda_cost
:noindex:
mse_cost
square_error_cost
--------
.. autoclass:: paddle.v2.layer.mse_cost
.. autoclass:: paddle.v2.layer.square_error_cost
:noindex:
rank_cost
......
......@@ -55,7 +55,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
# 线性计算网络层: ȳ = wx + b
ȳ = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
# 计算误差函数,即 ȳ 和真实 y 之间的距离
cost = mse_cost(input= ȳ, label=y)
cost = square_error_cost(input= ȳ, label=y)
outputs(cost)
......@@ -69,7 +69,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
- **数据层**:数据层 `data_layer` 是神经网络的入口,它读入数据并将它们传输到接下来的网络层。这里数据层有两个,分别对应于变量 `x` 和 `y`。
- **全连接层**:全连接层 `fc_layer` 是基础的计算单元,这里利用它建模变量之间的线性关系。计算单元是神经网络的核心,PaddlePaddle支持大量的计算单元和任意深度的网络连接,从而可以拟合任意的函数来学习复杂的数据关系。
- **回归误差代价层**:回归误差代价层 `mse_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。
- **回归误差代价层**:回归误差代价层 `square_error_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。
定义了网络结构并保存为 `trainer_config.py` 之后,运行以下训练命令:
......
......@@ -49,7 +49,7 @@ To recover this relationship between ``X`` and ``Y``, we use a neural network wi
x = data_layer(name='x', size=1)
y = data_layer(name='y', size=1)
y_predict = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
cost = mse_cost(input=y_predict, label=y)
cost = square_error_cost(input=y_predict, label=y)
outputs(cost)
Some of the most fundamental usages of PaddlePaddle are demonstrated:
......
......@@ -8,7 +8,7 @@ paddle.init(use_gpu=False)
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.mse_cost(input=y_predict, label=y)
cost = paddle.layer.square_error_cost(input=y_predict, label=y)
# create parameters
parameters = paddle.parameters.create(cost)
......
......@@ -81,9 +81,9 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和
.. code-block:: bash
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
cost = paddle.layer.mse_cost(input=y_predict, label=y)
cost = paddle.layer.square_error_cost(input=y_predict, label=y)
其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上方误差层。
其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上方误差层。
最后一层cost中记录了神经网络的所有拓扑结构,通过组合不同的layer,我们即可完成神经网络的搭建。
......@@ -147,4 +147,4 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和
.. literalinclude:: src/train.py
:linenos:
有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 <http://book.paddlepaddle.org/index.html>`_。
\ No newline at end of file
有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 <http://book.paddlepaddle.org/index.html>`_。
......@@ -213,7 +213,7 @@ I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions
I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done.
[WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config.
[INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating]
[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__mse_cost_0__]
[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__square_error_cost_0__]
I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal
I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
......
......@@ -53,7 +53,7 @@ __all__ = [
'cos_sim',
'hsigmoid',
'conv_projection',
'mse_cost',
'square_error_cost',
'regression_cost',
'classification_cost',
'LayerOutput',
......@@ -4238,13 +4238,18 @@ def __cost_input__(input, label, weight=None):
@wrap_name_default()
@layer_support()
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
def square_error_cost(input,
label,
weight=None,
name=None,
coeff=1.0,
layer_attr=None):
"""
mean squared error cost:
sum of square error cost:
.. math::
\\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
cost = \\sum_{i=1}^N(t_i-y_i)^2
:param name: layer name.
:type name: basestring
......@@ -4273,7 +4278,7 @@ def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
return LayerOutput(name, LayerType.COST, parents=parents, size=1)
regression_cost = mse_cost
regression_cost = square_error_cost
@wrap_name_default("cost")
......@@ -5798,9 +5803,9 @@ def huber_regression_cost(input,
coeff=1.0,
layer_attr=None):
"""
In statistics, the Huber loss is a loss function used in robust regression,
that is less sensitive to outliers in data than the squared error loss.
Given a prediction f(x), a label y and :math:`\delta`, the loss function
In statistics, the Huber loss is a loss function used in robust regression,
that is less sensitive to outliers in data than the squared error loss.
Given a prediction f(x), a label y and :math:`\delta`, the loss function
is defined as:
.. math:
......@@ -5848,13 +5853,13 @@ def huber_classification_cost(input,
coeff=1.0,
layer_attr=None):
"""
For classification purposes, a variant of the Huber loss called modified Huber
is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
For classification purposes, a variant of the Huber loss called modified Huber
is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
loss is defined as:
.. math:
loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
loss = -4yf(x), \text{otherwise}
The example usage is:
......
......@@ -45,7 +45,7 @@ layers {
coeff: 1.0
}
layers {
name: "__mse_cost_0__"
name: "__square_error_cost_0__"
type: "square_error"
size: 1
active_type: ""
......@@ -130,7 +130,7 @@ input_layer_names: "label"
input_layer_names: "weight"
input_layer_names: "multi_class_label"
output_layer_names: "__cost_0__"
output_layer_names: "__mse_cost_0__"
output_layer_names: "__square_error_cost_0__"
output_layer_names: "__nce_layer_0__"
evaluators {
name: "classification_error_evaluator"
......@@ -146,7 +146,7 @@ sub_models {
layer_names: "weight"
layer_names: "__fc_layer_0__"
layer_names: "__cost_0__"
layer_names: "__mse_cost_0__"
layer_names: "__square_error_cost_0__"
layer_names: "multi_class_label"
layer_names: "__nce_layer_0__"
input_layer_names: "input"
......@@ -154,7 +154,7 @@ sub_models {
input_layer_names: "weight"
input_layer_names: "multi_class_label"
output_layer_names: "__cost_0__"
output_layer_names: "__mse_cost_0__"
output_layer_names: "__square_error_cost_0__"
output_layer_names: "__nce_layer_0__"
evaluator_names: "classification_error_evaluator"
is_recurrent_layer_group: false
......
......@@ -10,7 +10,7 @@ fc = fc_layer(input=data, size=10, act=SoftmaxActivation())
outputs(
classification_cost(
input=fc, label=lbl, weight=wt),
mse_cost(
square_error_cost(
input=fc, label=lbl, weight=wt),
nce_layer(
input=fc,
......
......@@ -134,8 +134,9 @@ class CostLayerTest(unittest.TestCase):
cost3 = layer.cross_entropy_cost(input=inference, label=label)
cost4 = layer.cross_entropy_with_selfnorm_cost(
input=inference, label=label)
cost5 = layer.mse_cost(input=inference, label=label)
cost6 = layer.mse_cost(input=inference, label=label, weight=weight)
cost5 = layer.square_error_cost(input=inference, label=label)
cost6 = layer.square_error_cost(
input=inference, label=label, weight=weight)
cost7 = layer.multi_binary_label_cross_entropy_cost(
input=inference, label=label)
cost8 = layer.rank_cost(left=score, right=score, label=score)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册