提交 d7407c90 编写于 作者: S sneaxiy

refine cross_entropy mem

test=develop
上级 3c60446e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/cross_entropy2_op.h"
#include <memory>
#include <string>
#include <unordered_map>
namespace paddle {
namespace operators {
class CrossEntropyOp2 : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("XShape"),
"Output(XShape) should be not null.");
auto x_dims = ctx->GetInputDim("X");
auto label_dims = ctx->GetInputDim("Label");
int rank = x_dims.size();
PADDLE_ENFORCE_EQ(rank, label_dims.size(),
"Input(X) and Input(Label) shall have the same rank.");
bool check = true;
if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
framework::product(label_dims) <= 0)) {
check = false;
}
if (check) {
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension.");
}
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
"Last dimension of Input(Label) should be 1.");
auto y_dims = x_dims;
y_dims[rank - 1] = 1;
ctx->SetOutputDim("Y", y_dims);
ctx->ShareLoD("X", /*->*/ "Y");
auto x_dims_vec = framework::vectorize(x_dims);
x_dims_vec.push_back(0);
ctx->SetOutputDim("XShape", framework::make_ddim(x_dims_vec));
ctx->ShareLoD("X", /*->*/ "XShape");
}
protected:
// Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
ctx.device_context());
}
};
class CrossEntropyGradientOp2 : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("XShape"),
"Input(XShape) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should be not null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
"Input(Y@GRAD) shoudl be not null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Output(X@GRAD) should be not null.");
auto x_shapes = ctx->GetInputDim("XShape");
framework::DDim x_dims(x_shapes.Get(), x_shapes.size() - 1);
auto label_dims = ctx->GetInputDim("Label");
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
int rank = x_dims.size();
PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
"Input(Y@Grad) and Input(X) should have the same rank.");
PADDLE_ENFORCE_EQ(label_dims.size(), rank,
"Input(Label) and Input(X) should have the same rank.");
bool check = true;
if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
framework::product(label_dims) <= 0)) {
check = false;
}
if (check) {
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"The Input(X) and Input(Label) should have the same "
"shape except the last dimension.");
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(dy_dims, 0, rank - 1),
"The Input(X) and Input(Y@Grad) should have the same "
"shape except the last dimension.");
}
PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
"The last dimension of Input(Y@Grad) should be 1.");
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
"Last dimension of Input(Label) should be 1.");
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
ctx->ShareLoD("XShape", framework::GradVarName("X"));
}
protected:
// Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
ctx.Input<Tensor>(framework::GradVarName("Y"))->type(),
ctx.device_context());
}
};
class CrossEntropyOpMaker2 : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>), a tensor whose last dimension "
"size is equal to the number of classes. This input is a "
"probability computed by the previous operator, which is almost "
"always the result of a softmax operator.");
AddInput(
"Label",
"(Tensor), the tensor which represents the ground truth. It has the "
"same shape with 'X' except the last dimension. One hot Tensor.");
AddOutput("Y",
"(Tensor, default Tensor<float>), a tensor whose shape is same "
"with 'X' except that the last dimension size is 1. It "
"represents the cross entropy loss.");
AddOutput("XShape", "Temporaily variable to save shape and LoD of X.");
AddAttr<int>("ignore_index",
"(int, default -100), Specifies a target value that is"
"ignored and does not contribute to the input gradient."
"Only valid if soft_label is set to False")
.SetDefault(-100);
AddComment(R"DOC(
CrossEntropy Operator.
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
The matrix's second dimension(row length) is as same as the original last
dimension, and the first dimension(column length) is the product of all other
original dimensions. Then the softmax computation will take palce on each raw
of flattened matrixs.
Only support hard label.
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.
)DOC");
}
};
class CrossEntropyOpInferVarType2
: public framework::PassInDtypeAndVarTypeToOutput {
protected:
std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
const override {
return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
}
};
class CrossEntropyGradOpMaker2 : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("cross_entropy_grad2");
op->SetInput("Label", Input("Label"));
op->SetInput("Y", Output("Y"));
op->SetInput("XShape", Output("XShape"));
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using CPUCtx = paddle::platform::CPUDeviceContext;
REGISTER_OPERATOR(cross_entropy2, ops::CrossEntropyOp2,
ops::CrossEntropyOpMaker2, ops::CrossEntropyOpInferVarType2,
ops::CrossEntropyGradOpMaker2);
REGISTER_OPERATOR(cross_entropy_grad2, ops::CrossEntropyGradientOp2);
REGISTER_OP_CPU_KERNEL(cross_entropy2,
ops::CrossEntropyOpKernel2<CPUCtx, float>,
ops::CrossEntropyOpKernel2<CPUCtx, double>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad2,
ops::CrossEntropyGradientOpKernel2<CPUCtx, float>,
ops::CrossEntropyGradientOpKernel2<CPUCtx, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/cross_entropy2_op.h"
#include "paddle/fluid/platform/float16.h"
namespace plat = paddle::platform;
namespace ops = paddle::operators;
using CUDACtx = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(cross_entropy2,
ops::CrossEntropyOpKernel2<CUDACtx, float>,
ops::CrossEntropyOpKernel2<CUDACtx, double>,
ops::CrossEntropyOpKernel2<CUDACtx, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
cross_entropy_grad2, ops::CrossEntropyGradientOpKernel2<CUDACtx, float>,
ops::CrossEntropyGradientOpKernel2<CUDACtx, double>,
ops::CrossEntropyGradientOpKernel2<CUDACtx, plat::float16>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cmath>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
HOSTDEVICE inline platform::float16 RealLog(platform::float16 x) {
#ifdef __NVCC__
return static_cast<platform::float16>(logf(static_cast<float>(x)));
#else
return static_cast<platform::float16>(std::log(static_cast<float>(x)));
#endif
}
HOSTDEVICE inline float RealLog(float x) {
#ifdef __NVCC__
return logf(x);
#else
return std::log(x);
#endif
}
HOSTDEVICE inline double RealLog(double x) {
#ifdef __NVCC__
return log(x);
#else
return std::log(x);
#endif
}
HOSTDEVICE inline platform::float16 RealExp(platform::float16 x) {
#ifdef __NVCC__
return static_cast<platform::float16>(expf(static_cast<float>(x)));
#else
return static_cast<platform::float16>(std::exp(static_cast<float>(x)));
#endif
}
HOSTDEVICE inline float RealExp(float x) {
#ifdef __NVCC__
return expf(x);
#else
return std::exp(x);
#endif
}
HOSTDEVICE inline double RealExp(double x) {
#ifdef __NVCC__
return exp(x);
#else
return std::exp(x);
#endif
}
template <typename T>
struct CrossEntropyForwardFunctor {
CrossEntropyForwardFunctor(const T *x, T *y, const int64_t *label,
int64_t ignore_index, int64_t feature_size)
: x_(x),
y_(y),
label_(label),
ignore_index_(ignore_index),
feature_size_(feature_size) {}
HOSTDEVICE void operator()(int64_t row_idx) const {
auto col_idx = label_[row_idx];
if (col_idx != ignore_index_) {
y_[row_idx] = -math::TolerableValue<T>()(
RealLog(x_[row_idx * feature_size_ + col_idx]));
} else {
y_[row_idx] = 0;
}
}
const T *x_;
T *y_;
const int64_t *label_;
int64_t ignore_index_;
int64_t feature_size_;
};
template <typename T>
struct CrossEntropyBackwardFunctor {
CrossEntropyBackwardFunctor(T *dx, const T *y, const T *dy,
const int64_t *label, int64_t ignore_index,
int64_t feature_size)
: dx_(dx),
y_(y),
dy_(dy),
label_(label),
ignore_index_(ignore_index),
feature_size_(feature_size) {}
HOSTDEVICE void operator()(int64_t idx) const {
auto row_idx = idx / feature_size_;
auto col_idx = idx % feature_size_;
auto label = label_[row_idx];
if (label == col_idx && label != ignore_index_) {
dx_[idx] = -dy_[row_idx] * RealExp(y_[row_idx]);
} else {
dx_[idx] = 0;
}
}
T *dx_;
const T *y_;
const T *dy_;
const int64_t *label_;
int64_t ignore_index_;
int64_t feature_size_;
};
template <typename DeviceContext, typename T>
class CrossEntropyOpKernel2 : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<Tensor>("X");
auto *label = ctx.Input<Tensor>("Label");
auto *y = ctx.Output<Tensor>("Y");
auto *p_y = y->mutable_data<T>(ctx.GetPlace());
auto *p_x = x->data<T>();
auto *p_label = label->data<int64_t>();
int rank = x->dims().size();
int64_t feature_size = x->dims()[rank - 1];
int64_t batch_size = framework::product(x->dims()) / feature_size;
int64_t ignore_index = ctx.Attr<int>("ignore_index");
platform::ForRange<DeviceContext> for_range(
ctx.template device_context<DeviceContext>(), batch_size);
for_range(CrossEntropyForwardFunctor<T>(p_x, p_y, p_label, ignore_index,
feature_size));
}
};
template <typename DeviceContext, typename T>
class CrossEntropyGradientOpKernel2 : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *y = ctx.Input<Tensor>("Y");
auto *dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto *label = ctx.Input<Tensor>("Label");
auto *p_dx = dx->mutable_data<T>(ctx.GetPlace());
auto *p_y = y->data<T>();
auto *p_dy = dy->data<T>();
auto *p_label = label->data<int64_t>();
int64_t ignore_index = ctx.Attr<int>("ignore_index");
int rank = dx->dims().size();
int64_t feature_size = dx->dims()[rank - 1];
int64_t batch_size = framework::product(dx->dims()) / feature_size;
platform::ForRange<DeviceContext> for_range(
ctx.template device_context<DeviceContext>(),
batch_size * feature_size);
for_range(CrossEntropyBackwardFunctor<T>(p_dx, p_y, p_dy, p_label,
ignore_index, feature_size));
}
};
} // namespace operators
} // namespace paddle
...@@ -1432,6 +1432,8 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex): ...@@ -1432,6 +1432,8 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
predict = fluid.layers.fc(input=net, size=classdim, act='softmax') predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label)
""" """
if not soft_label:
return cross_entropy2(input, label, ignore_index)
helper = LayerHelper('cross_entropy', **locals()) helper = LayerHelper('cross_entropy', **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype) out = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op( helper.append_op(
...@@ -1444,6 +1446,20 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex): ...@@ -1444,6 +1446,20 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
return out return out
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
helper = LayerHelper('cross_entropy2', **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype)
xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='cross_entropy2',
inputs={'X': [input],
'Label': [label]},
outputs={'Y': [out],
'XShape': [xshape]},
attrs={'ignore_index': ignore_index})
return out
def bpr_loss(input, label, name=None): def bpr_loss(input, label, name=None):
""" """
Bayesian Personalized Ranking Loss Operator. Bayesian Personalized Ranking Loss Operator.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册