Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d7319c22
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d7319c22
编写于
11月 14, 2017
作者:
Z
Zhaolong Xing
提交者:
GitHub
11月 14, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5165 from NHZlX/add_dilation
Add dilation for exconv layer
上级
3e6f7684
f3818bd3
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
299 addition
and
157 deletion
+299
-157
paddle/function/ConvOp.h
paddle/function/ConvOp.h
+6
-0
paddle/function/ConvOpTest.h
paddle/function/ConvOpTest.h
+53
-34
paddle/function/GemmConvOp.cpp
paddle/function/GemmConvOp.cpp
+9
-3
paddle/function/Im2Col.h
paddle/function/Im2Col.h
+6
-2
paddle/function/Im2ColOp.cpp
paddle/function/Im2ColOp.cpp
+24
-14
paddle/function/Im2ColOpGpu.cu
paddle/function/Im2ColOpGpu.cu
+55
-16
paddle/function/Im2ColTest.cpp
paddle/function/Im2ColTest.cpp
+92
-76
paddle/gserver/layers/ExpandConvLayer.cpp
paddle/gserver/layers/ExpandConvLayer.cpp
+10
-2
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+1
-1
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+26
-8
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+3
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
...config_helpers/tests/configs/protostr/img_layers.protostr
+2
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
..._helpers/tests/configs/protostr/img_trans_layers.protostr
+2
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
...pers/tests/configs/protostr/test_bilinear_interp.protostr
+2
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_maxout.protostr
...onfig_helpers/tests/configs/protostr/test_maxout.protostr
+4
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_pad.protostr
...r_config_helpers/tests/configs/protostr/test_pad.protostr
+2
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_roi_pool_layer.protostr
...lpers/tests/configs/protostr/test_roi_pool_layer.protostr
+2
-0
未找到文件。
paddle/function/ConvOp.h
浏览文件 @
d7319c22
...
...
@@ -61,6 +61,7 @@ public:
// function arguments
strides_
=
config
.
get
<
std
::
vector
<
size_t
>>
(
"strides"
);
paddings_
=
config
.
get
<
std
::
vector
<
size_t
>>
(
"paddings"
);
dilations_
=
config
.
get
<
std
::
vector
<
size_t
>>
(
"dilations"
);
groups_
=
config
.
get
<
size_t
>
(
"groups"
);
// number of inputs and outputs
...
...
@@ -118,6 +119,7 @@ protected:
std
::
vector
<
size_t
>
strides_
;
std
::
vector
<
size_t
>
paddings_
;
std
::
vector
<
size_t
>
dilations_
;
/// Group size, refer to grouped convolution in
/// Alex Krizhevsky's paper: when group=2, the first half of the
...
...
@@ -133,6 +135,10 @@ protected:
inline
int
paddingW
()
const
{
return
paddings_
[
1
];
}
inline
int
dilationH
()
const
{
return
dilations_
[
0
];
}
inline
int
dilationW
()
const
{
return
dilations_
[
1
];
}
// A temporary memory in convolution calculation.
MemoryHandlePtr
memory_
;
...
...
paddle/function/ConvOpTest.h
浏览文件 @
d7319c22
...
...
@@ -79,45 +79,59 @@ void Convolution(const std::string& conv1,
if
(
outputChannels
<
inputChannels
)
continue
;
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
for
(
size_t
dilation
:
{
1
,
3
})
{
if
(
padding
>=
filterSize
)
break
;
size_t
filterS
=
(
filterSize
-
1
)
*
dilation
+
1
;
// NNPACK only supports stride = 1 if batchSize > 1
if
((
conv1
==
"NNPACKConv-CPU"
||
conv2
==
"NNPACKConv-CPU"
)
&&
batchSize
>
1
&&
stride
>
1
)
break
;
if
(
inputSize
+
2
*
padding
<
filterS
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
if
((
conv1
==
"NaiveConv-CPU"
||
conv2
==
"NaiveConv-CPU"
||
conv1
==
"NNPACKConv-CPU"
||
conv2
==
"NNPACKConv-CPU"
)
&&
dilation
>
1
)
break
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
(
size_t
)
1
)
.
set
(
"algo"
,
(
std
::
string
)
"auto"
));
// NNPACK only supports stride = 1 if batchSize > 1
if
((
conv1
==
"NNPACKConv-CPU"
||
conv2
==
"NNPACKConv-CPU"
)
&&
batchSize
>
1
&&
stride
>
1
)
break
;
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
{
outputChannels
,
inputChannels
,
filterSize
,
filterSize
};
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
size_t
outputSize
=
(
inputSize
-
filterS
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
function
(
test
,
input
,
filter
,
output
);
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
std
::
vector
<
size_t
>
dilations
=
{
dilation
,
dilation
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"dilations"
,
dilations
)
.
set
(
"groups"
,
(
size_t
)
1
)
.
set
(
"algo"
,
(
std
::
string
)
"auto"
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
{
outputChannels
,
inputChannels
,
filterSize
,
filterSize
};
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
function
(
test
,
input
,
filter
,
output
);
}
}
}
}
...
...
@@ -144,6 +158,7 @@ void Convolution2(const std::string& conv1,
for
(
size_t
outputChannels
:
{
7
})
{
size_t
stride
=
1
;
size_t
padding
=
0
;
size_t
dilation
=
1
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
...
...
@@ -162,6 +177,7 @@ void Convolution2(const std::string& conv1,
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
std
::
vector
<
size_t
>
dilations
=
{
dilation
,
dilation
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
...
...
@@ -169,6 +185,7 @@ void Convolution2(const std::string& conv1,
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
(
size_t
)
1
)
.
set
(
"dilations"
,
dilations
)
.
set
(
"algo"
,
(
std
::
string
)
"auto"
));
TensorShape
input
{
...
...
@@ -223,6 +240,7 @@ void DepthwiseConvolution(const std::string& conv1,
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
std
::
vector
<
size_t
>
dilations
=
{
1
,
1
};
size_t
groups
=
inputChannels
;
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
...
...
@@ -231,6 +249,7 @@ void DepthwiseConvolution(const std::string& conv1,
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"dilations"
,
dilations
)
.
set
(
"algo"
,
(
std
::
string
)
"auto"
));
TensorShape
input
{
...
...
paddle/function/GemmConvOp.cpp
浏览文件 @
d7319c22
...
...
@@ -100,7 +100,9 @@ public:
strideH
(),
strideW
(),
paddingH
(),
paddingW
());
paddingW
(),
dilationH
(),
dilationW
());
}
else
{
colData
=
inputData
+
g
*
inputOffset
;
}
...
...
@@ -223,7 +225,9 @@ public:
strideH
(),
strideW
(),
paddingH
(),
paddingW
());
paddingW
(),
dilationH
(),
dilationW
());
}
}
inputGrad
+=
inputChannels
*
inputHeight
*
inputWidth
;
...
...
@@ -310,7 +314,9 @@ public:
strideH
(),
strideW
(),
paddingH
(),
paddingW
());
paddingW
(),
dilationH
(),
dilationW
());
}
else
{
colData
=
inputData
+
g
*
inputOffset
;
}
...
...
paddle/function/Im2Col.h
浏览文件 @
d7319c22
...
...
@@ -78,7 +78,9 @@ public:
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
);
int
paddingWidth
,
int
dilationHeight
=
1
,
int
dilationWidth
=
1
);
};
template
<
ColFormat
Format
,
DeviceType
Device
,
class
T
>
...
...
@@ -91,7 +93,9 @@ public:
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
);
int
paddingWidth
,
int
dilationHeight
=
1
,
int
dilationWidth
=
1
);
};
}
// namespace paddle
paddle/function/Im2ColOp.cpp
浏览文件 @
d7319c22
...
...
@@ -31,7 +31,9 @@ public:
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
paddingWidth
,
int
dilationHeight
,
int
dilationWidth
)
{
int
inputChannels
=
imShape
[
0
];
int
inputHeight
=
imShape
[
1
];
int
inputWidth
=
imShape
[
2
];
...
...
@@ -47,8 +49,8 @@ public:
int
c_im
=
c
/
filterWidth
/
filterHeight
;
for
(
int
h
=
0
;
h
<
outputHeight
;
++
h
)
{
for
(
int
w
=
0
;
w
<
outputWidth
;
++
w
)
{
int
imRowIdx
=
h
*
strideHeight
+
hOffset
;
int
imColIdx
=
w
*
strideWidth
+
wOffset
;
int
imRowIdx
=
h
*
strideHeight
+
hOffset
*
dilationHeight
;
int
imColIdx
=
w
*
strideWidth
+
wOffset
*
dilationWidth
;
if
((
imRowIdx
-
paddingHeight
)
<
0
||
(
imRowIdx
-
paddingHeight
)
>=
inputHeight
||
(
imColIdx
-
paddingWidth
)
<
0
||
...
...
@@ -81,7 +83,9 @@ public:
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
paddingWidth
,
int
dilationHeight
,
int
dilationWidth
)
{
int
inputChannels
=
imShape
[
0
];
int
inputHeight
=
imShape
[
1
];
int
inputWidth
=
imShape
[
2
];
...
...
@@ -97,8 +101,8 @@ public:
int
c_im
=
c
/
filterWidth
/
filterHeight
;
for
(
int
h
=
0
;
h
<
outputHeight
;
++
h
)
{
for
(
int
w
=
0
;
w
<
outputWidth
;
++
w
)
{
int
imRowIdx
=
h
*
strideHeight
+
hOffset
;
int
imColIdx
=
w
*
strideWidth
+
wOffset
;
int
imRowIdx
=
h
*
strideHeight
+
hOffset
*
dilationHeight
;
int
imColIdx
=
w
*
strideWidth
+
wOffset
*
dilationWidth
;
if
((
imRowIdx
-
paddingHeight
)
>=
0
&&
(
imRowIdx
-
paddingHeight
)
<
inputHeight
&&
(
imColIdx
-
paddingWidth
)
>=
0
&&
...
...
@@ -134,7 +138,9 @@ public:
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
paddingWidth
,
int
dilationHeight
=
1
,
int
dilationWidth
=
1
)
{
int
inputChannels
=
imShape
[
0
];
int
inputHeight
=
imShape
[
1
];
int
inputWidth
=
imShape
[
2
];
...
...
@@ -147,9 +153,10 @@ public:
for
(
int
channel
=
0
;
channel
<
inputChannels
;
++
channel
)
{
for
(
int
filterH
=
0
;
filterH
<
filterHeight
;
++
filterH
)
{
for
(
int
filterW
=
0
;
filterW
<
filterWidth
;
++
filterW
)
{
int
imRowOffset
=
outputH
*
strideHeight
+
filterH
-
paddingHeight
;
int
imColOffset
=
outputW
*
strideWidth
+
filterW
-
paddingWidth
;
int
imRowOffset
=
outputH
*
strideHeight
+
filterH
*
dilationHeight
-
paddingHeight
;
int
imColOffset
=
outputW
*
strideWidth
+
filterW
*
dilationWidth
-
paddingWidth
;
int
colDataOffset
=
(((
outputH
*
outputWidth
+
outputW
)
*
inputChannels
+
channel
)
*
...
...
@@ -189,7 +196,9 @@ public:
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
paddingWidth
,
int
dilationHeight
=
1
,
int
dilationWidth
=
1
)
{
int
inputChannels
=
imShape
[
0
];
int
inputHeight
=
imShape
[
1
];
int
inputWidth
=
imShape
[
2
];
...
...
@@ -202,9 +211,10 @@ public:
for
(
int
channel
=
0
;
channel
<
inputChannels
;
++
channel
)
{
for
(
int
filterH
=
0
;
filterH
<
filterHeight
;
++
filterH
)
{
for
(
int
filterW
=
0
;
filterW
<
filterWidth
;
++
filterW
)
{
int
imRowOffset
=
outputH
*
strideHeight
+
filterH
-
paddingHeight
;
int
imColOffset
=
outputW
*
strideWidth
+
filterW
-
paddingWidth
;
int
imRowOffset
=
outputH
*
strideHeight
+
filterH
*
dilationHeight
-
paddingHeight
;
int
imColOffset
=
outputW
*
strideWidth
+
filterW
*
dilationWidth
-
paddingWidth
;
int
colDataOffset
=
(((
outputH
*
outputWidth
+
outputW
)
*
inputChannels
+
channel
)
*
...
...
paddle/function/Im2ColOpGpu.cu
浏览文件 @
d7319c22
...
...
@@ -28,6 +28,8 @@ __global__ void im2col(const T* data_im,
int
strideW
,
int
paddingH
,
int
paddingW
,
int
dilationH
,
int
dilationW
,
int
height_col
,
int
width_col
,
T
*
data_col
)
{
...
...
@@ -44,8 +46,8 @@ __global__ void im2col(const T* data_im,
data_col
+=
(
channel_out
*
height_col
+
h_out
)
*
width_col
+
w_out
;
for
(
int
i
=
0
;
i
<
blockH
;
++
i
)
{
for
(
int
j
=
0
;
j
<
blockW
;
++
j
)
{
int
rIdx
=
int
(
h_in
+
i
);
int
cIdx
=
int
(
w_in
+
j
);
int
rIdx
=
int
(
h_in
+
i
*
dilationH
);
int
cIdx
=
int
(
w_in
+
j
*
dilationW
);
if
((
rIdx
-
(
int
)
paddingH
)
>=
(
int
)
height
||
(
rIdx
-
(
int
)
paddingH
)
<
0
||
(
cIdx
-
(
int
)
paddingW
)
>=
(
int
)
width
||
...
...
@@ -77,7 +79,9 @@ public:
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
paddingWidth
,
int
dilationHeight
,
int
dilationWidth
)
{
int
inputChannels
=
imShape
[
0
];
int
inputHeight
=
imShape
[
1
];
int
inputWidth
=
imShape
[
2
];
...
...
@@ -102,6 +106,8 @@ public:
strideWidth
,
paddingHeight
,
paddingWidth
,
dilationHeight
,
dilationWidth
,
outputHeight
,
outputWidth
,
colData
);
...
...
@@ -121,6 +127,8 @@ __global__ void col2im(size_t n,
size_t
strideW
,
size_t
paddingH
,
size_t
paddingW
,
size_t
dilationH
,
size_t
dilationW
,
size_t
height_col
,
size_t
width_col
,
T
*
data_im
)
{
...
...
@@ -131,23 +139,34 @@ __global__ void col2im(size_t n,
int
w
=
int
(
index
%
width
);
int
h
=
int
((
index
/
width
)
%
height
);
int
c
=
int
(
index
/
(
width
*
height
));
int
filterH
=
(
blockH
-
1
)
*
dilationH
+
1
;
int
filterW
=
(
blockW
-
1
)
*
dilationW
+
1
;
if
((
w
-
(
int
)
paddingW
)
>=
0
&&
(
w
-
(
int
)
paddingW
)
<
(
width
-
2
*
paddingW
)
&&
(
h
-
(
int
)
paddingH
)
>=
0
&&
(
h
-
paddingH
)
<
(
height
-
2
*
paddingH
))
{
// compute the start and end of the output
int
w_col_start
=
(
w
<
(
int
)
blockW
)
?
0
:
(
w
-
int
(
block
W
))
/
(
int
)
strideW
+
1
;
(
w
<
(
int
)
filterW
)
?
0
:
(
w
-
int
(
filter
W
))
/
(
int
)
strideW
+
1
;
int
w_col_end
=
min
((
int
)(
w
/
(
int
)
strideW
+
1
),
(
int
)(
width_col
));
int
h_col_start
=
(
h
<
(
int
)
blockH
)
?
0
:
(
h
-
(
int
)
block
H
)
/
(
int
)
strideH
+
1
;
(
h
<
(
int
)
filterH
)
?
0
:
(
h
-
(
int
)
filter
H
)
/
(
int
)
strideH
+
1
;
int
h_col_end
=
min
(
int
(
h
/
strideH
+
1
),
int
(
height_col
));
for
(
int
h_col
=
h_col_start
;
h_col
<
h_col_end
;
++
h_col
)
{
for
(
int
w_col
=
w_col_start
;
w_col
<
w_col_end
;
++
w_col
)
{
// the col location: [c * width * height + h_out, w_out]
int
c_col
=
int
(
c
*
blockH
*
blockW
)
+
(
h
-
h_col
*
(
int
)
strideH
)
*
(
int
)
blockW
+
(
w
-
w_col
*
(
int
)
strideW
);
val
+=
data_col
[(
c_col
*
height_col
+
h_col
)
*
width_col
+
w_col
];
int
h_k
=
(
h
-
h_col
*
strideH
);
int
w_k
=
(
w
-
w_col
*
strideW
);
if
(
h_k
%
dilationH
==
0
&&
w_k
%
dilationW
==
0
)
{
h_k
/=
dilationH
;
w_k
/=
dilationW
;
int
c_col
=
(((
c
*
blockH
+
h_k
)
*
blockW
+
w_k
)
*
height_col
+
h_col
)
*
width_col
+
w_col
;
val
+=
data_col
[
c_col
];
}
}
}
h
-=
paddingH
;
...
...
@@ -173,7 +192,9 @@ public:
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
paddingWidth
,
int
dilationHeight
,
int
dilationWidth
)
{
int
inputChannels
=
imShape
[
0
];
int
inputHeight
=
imShape
[
1
];
int
inputWidth
=
imShape
[
2
];
...
...
@@ -205,6 +226,8 @@ public:
strideWidth
,
paddingHeight
,
paddingWidth
,
dilationHeight
,
dilationWidth
,
outputHeight
,
outputWidth
,
imData
);
...
...
@@ -229,6 +252,8 @@ __global__ void im2colOCF(const T* imData,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
,
int
dilationHeight
,
int
dilationWidth
,
int
outputHeight
,
int
outputWidth
)
{
int
swId
=
blockIdx
.
x
;
...
...
@@ -237,8 +262,10 @@ __global__ void im2colOCF(const T* imData,
channelId
+=
blockDim
.
z
)
{
for
(
int
idy
=
threadIdx
.
y
;
idy
<
filterHeight
;
idy
+=
blockDim
.
y
)
{
for
(
int
idx
=
threadIdx
.
x
;
idx
<
filterWidth
;
idx
+=
blockDim
.
x
)
{
int
widthOffset
=
idx
+
swId
*
strideWidth
-
paddingWidth
;
int
heightOffset
=
idy
+
shId
*
strideHeight
-
paddingHeight
;
int
widthOffset
=
idx
*
dilationHeight
+
swId
*
strideWidth
-
paddingWidth
;
int
heightOffset
=
idy
*
dilationWidth
+
shId
*
strideHeight
-
paddingHeight
;
int
imOffset
=
widthOffset
+
heightOffset
*
inputWidth
+
channelId
*
inputHeight
*
inputWidth
;
...
...
@@ -273,7 +300,9 @@ public:
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
paddingWidth
,
int
dilationHeight
,
int
dilationWidth
)
{
int
inputChannels
=
imShape
[
0
];
int
inputHeight
=
imShape
[
1
];
int
inputWidth
=
imShape
[
2
];
...
...
@@ -312,6 +341,8 @@ public:
strideWidth
,
paddingHeight
,
paddingWidth
,
dilationHeight
,
dilationWidth
,
outputHeight
,
outputWidth
);
CHECK_SYNC
(
"Im2ColFunctor GPU failed"
);
...
...
@@ -330,6 +361,8 @@ __global__ void col2imOCF(T* imData,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
,
int
dilationHeight
,
int
dilationWidth
,
int
outputHeight
,
int
outputWidth
)
{
int
swId
=
blockIdx
.
x
;
...
...
@@ -338,8 +371,10 @@ __global__ void col2imOCF(T* imData,
channelId
+=
blockDim
.
z
)
{
for
(
int
idy
=
threadIdx
.
y
;
idy
<
filterHeight
;
idy
+=
blockDim
.
y
)
{
for
(
int
idx
=
threadIdx
.
x
;
idx
<
filterWidth
;
idx
+=
blockDim
.
x
)
{
int
widthOffset
=
idx
+
swId
*
strideWidth
-
paddingWidth
;
int
heightOffset
=
idy
+
shId
*
strideHeight
-
paddingHeight
;
int
widthOffset
=
idx
*
dilationWidth
+
swId
*
strideWidth
-
paddingWidth
;
int
heightOffset
=
idy
*
dilationHeight
+
shId
*
strideHeight
-
paddingHeight
;
int
imOffset
=
widthOffset
+
heightOffset
*
inputWidth
+
channelId
*
inputHeight
*
inputWidth
;
...
...
@@ -372,7 +407,9 @@ public:
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
paddingWidth
,
int
dilationHeight
,
int
dilationWidth
)
{
int
inputChannels
=
imShape
[
0
];
int
inputHeight
=
imShape
[
1
];
int
inputWidth
=
imShape
[
2
];
...
...
@@ -411,6 +448,8 @@ public:
strideWidth
,
paddingHeight
,
paddingWidth
,
dilationHeight
,
dilationWidth
,
outputHeight
,
outputWidth
);
CHECK_SYNC
(
"Col2ImFunctor GPU failed"
);
...
...
paddle/function/Im2ColTest.cpp
浏览文件 @
d7319c22
...
...
@@ -29,82 +29,98 @@ void TestIm2ColFunctor() {
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
inputHeight
<=
filterHeight
||
inputWidth
<=
filterWidth
)
break
;
if
(
padding
>=
filterHeight
||
padding
>=
filterWidth
)
break
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
size_t
outputWidth
=
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
TensorShape
imShape
=
TensorShape
({
channels
,
inputHeight
,
inputWidth
});
TensorShape
colShape1
=
TensorShape
({
channels
,
filterHeight
,
filterWidth
,
outputHeight
,
outputWidth
});
TensorShape
colShape2
=
TensorShape
({
outputHeight
,
outputWidth
,
channels
,
filterHeight
,
filterWidth
});
size_t
height
=
channels
*
filterHeight
*
filterWidth
;
size_t
width
=
outputHeight
*
outputWidth
;
VectorPtr
input1
=
Vector
::
create
(
imShape
.
getElements
(),
false
);
VectorPtr
input2
=
Vector
::
create
(
imShape
.
getElements
(),
false
);
MatrixPtr
output1
=
Matrix
::
create
(
height
,
width
,
false
,
false
);
MatrixPtr
output2
=
Matrix
::
create
(
width
,
height
,
false
,
false
);
input1
->
uniform
(
0.001
,
1
);
input2
->
copyFrom
(
*
input1
);
Im2ColFunctor
<
kCFO
,
Device
,
T
>
im2Col1
;
Im2ColFunctor
<
kOCF
,
Device
,
T
>
im2Col2
;
im2Col1
(
input1
->
getData
(),
imShape
,
output1
->
getData
(),
colShape1
,
stride
,
stride
,
padding
,
padding
);
im2Col2
(
input2
->
getData
(),
imShape
,
output2
->
getData
(),
colShape2
,
stride
,
stride
,
padding
,
padding
);
// The transposition of the result of ColFormat == kCFO
// is equal to the result of ColFormat == kOCF.
MatrixPtr
test
;
output2
->
transpose
(
test
,
true
);
autotest
::
TensorCheckErr
(
*
output1
,
*
test
);
Col2ImFunctor
<
kCFO
,
Device
,
T
>
col2Im1
;
Col2ImFunctor
<
kOCF
,
Device
,
T
>
col2Im2
;
col2Im1
(
input1
->
getData
(),
imShape
,
output1
->
getData
(),
colShape1
,
stride
,
stride
,
padding
,
padding
);
col2Im2
(
input2
->
getData
(),
imShape
,
output2
->
getData
(),
colShape2
,
stride
,
stride
,
padding
,
padding
);
autotest
::
TensorCheckErr
(
*
input1
,
*
input2
);
for
(
size_t
dilation
:
{
1
,
3
})
{
size_t
filterSizeH
=
(
filterHeight
-
1
)
*
dilation
+
1
;
size_t
filterSizeW
=
(
filterWidth
-
1
)
*
dilation
+
1
;
if
(
inputHeight
+
2
*
padding
<
filterSizeH
||
inputWidth
+
2
*
padding
<
filterSizeW
)
break
;
if
(
padding
>=
filterSizeH
||
padding
>=
filterSizeW
)
break
;
size_t
outputHeight
=
(
inputHeight
-
filterSizeH
+
2
*
padding
)
/
stride
+
1
;
size_t
outputWidth
=
(
inputWidth
-
filterSizeW
+
2
*
padding
)
/
stride
+
1
;
TensorShape
imShape
=
TensorShape
({
channels
,
inputHeight
,
inputWidth
});
TensorShape
colShape1
=
TensorShape
({
channels
,
filterHeight
,
filterWidth
,
outputHeight
,
outputWidth
});
TensorShape
colShape2
=
TensorShape
({
outputHeight
,
outputWidth
,
channels
,
filterHeight
,
filterWidth
});
size_t
height
=
channels
*
filterHeight
*
filterWidth
;
size_t
width
=
outputHeight
*
outputWidth
;
VectorPtr
input1
=
Vector
::
create
(
imShape
.
getElements
(),
false
);
VectorPtr
input2
=
Vector
::
create
(
imShape
.
getElements
(),
false
);
MatrixPtr
output1
=
Matrix
::
create
(
height
,
width
,
false
,
false
);
MatrixPtr
output2
=
Matrix
::
create
(
width
,
height
,
false
,
false
);
input1
->
uniform
(
0.001
,
1
);
input2
->
copyFrom
(
*
input1
);
Im2ColFunctor
<
kCFO
,
Device
,
T
>
im2Col1
;
Im2ColFunctor
<
kOCF
,
Device
,
T
>
im2Col2
;
im2Col1
(
input1
->
getData
(),
imShape
,
output1
->
getData
(),
colShape1
,
stride
,
stride
,
padding
,
padding
,
dilation
,
dilation
);
im2Col2
(
input2
->
getData
(),
imShape
,
output2
->
getData
(),
colShape2
,
stride
,
stride
,
padding
,
padding
,
dilation
,
dilation
);
// The transposition of the result of ColFormat == kCFO
// is equal to the result of ColFormat == kOCF.
MatrixPtr
test
;
output2
->
transpose
(
test
,
true
);
autotest
::
TensorCheckErr
(
*
output1
,
*
test
);
Col2ImFunctor
<
kCFO
,
Device
,
T
>
col2Im1
;
Col2ImFunctor
<
kOCF
,
Device
,
T
>
col2Im2
;
col2Im1
(
input1
->
getData
(),
imShape
,
output1
->
getData
(),
colShape1
,
stride
,
stride
,
padding
,
padding
,
dilation
,
dilation
);
col2Im2
(
input2
->
getData
(),
imShape
,
output2
->
getData
(),
colShape2
,
stride
,
stride
,
padding
,
padding
,
dilation
,
dilation
);
autotest
::
TensorCheckErr
(
*
input1
,
*
input2
);
}
}
}
}
...
...
paddle/gserver/layers/ExpandConvLayer.cpp
浏览文件 @
d7319c22
...
...
@@ -79,6 +79,10 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
for
(
int
i
=
0
;
i
<
config_
.
inputs_size
();
i
++
)
{
std
::
vector
<
size_t
>
paddings
=
{(
size_t
)
paddingY_
[
i
],
(
size_t
)
padding_
[
i
]};
std
::
vector
<
size_t
>
strides
=
{(
size_t
)
strideY_
[
i
],
(
size_t
)
stride_
[
i
]};
std
::
vector
<
size_t
>
dilations
=
{(
size_t
)
dilationY_
[
i
],
(
size_t
)
dilation_
[
i
]};
bool
useDilation
=
((
size_t
)
dilationY_
[
i
]
>
1
||
(
size_t
)
dilation_
[
i
]
>
1
);
// Convolution Layer uses the GemmConv function by default.
convType
=
"GemmConv"
;
...
...
@@ -97,13 +101,14 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
if
((
filterSize_
[
i
]
==
filterSizeY_
[
i
])
&&
(
filterSize_
[
i
]
==
3
||
filterSize_
[
i
]
==
4
)
&&
(
stride_
[
i
]
==
strideY_
[
i
])
&&
(
stride_
[
i
]
==
1
||
stride_
[
i
]
==
2
))
{
(
stride_
[
i
]
==
strideY_
[
i
])
&&
(
stride_
[
i
]
==
1
||
stride_
[
i
]
==
2
)
&&
!
useDilation
)
{
convType
=
"NeonDepthwiseConv"
;
}
#endif
}
if
(
FLAGS_use_nnpack
&&
!
isDeconv_
)
{
if
(
FLAGS_use_nnpack
&&
!
isDeconv_
&&
!
useDilation
)
{
createFunction
(
forward_
,
"NNPACKConv"
,
FuncConfig
()
...
...
@@ -117,6 +122,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"dilations"
,
dilations
)
.
set
(
"groups"
,
(
size_t
)
groups_
[
i
]));
createFunction
(
backward_
,
...
...
@@ -124,6 +130,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"dilations"
,
dilations
)
.
set
(
"groups"
,
(
size_t
)
groups_
[
i
]));
createFunction
(
backward_
,
...
...
@@ -131,6 +138,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"dilations"
,
dilations
)
.
set
(
"groups"
,
(
size_t
)
groups_
[
i
]));
}
}
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
d7319c22
...
...
@@ -434,7 +434,7 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
int
dilation
=
1
;
int
dilation
=
2
;
if
(
type
==
"cudnn_conv"
)
{
#if CUDNN_VERSION >= 6000
dilation
=
2
;
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
d7319c22
...
...
@@ -1200,8 +1200,14 @@ def TestData(data_config, async_load_data=None):
#caffe_mode: compute the output size using floor instead of ceil,
# which is consistent of caffe and CuDNN's convention.
def
cnn_output_size
(
img_size
,
filter_size
,
padding
,
stride
,
caffe_mode
):
output
=
(
2
*
padding
+
img_size
-
filter_size
)
/
float
(
stride
)
def
cnn_output_size
(
img_size
,
filter_size
,
padding
,
stride
,
caffe_mode
,
dilation
=
1
):
filter_s
=
(
filter_size
-
1
)
*
dilation
+
1
output
=
(
2
*
padding
+
img_size
-
filter_s
)
/
float
(
stride
)
if
caffe_mode
:
return
1
+
int
(
math
.
floor
(
output
))
else
:
...
...
@@ -1210,8 +1216,14 @@ def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
#It is the reverse function of cnn_output_size
def
cnn_image_size
(
output_size
,
filter_size
,
padding
,
stride
,
caffe_mode
):
img_size
=
(
output_size
-
1
)
*
stride
+
filter_size
-
2
*
padding
def
cnn_image_size
(
output_size
,
filter_size
,
padding
,
stride
,
caffe_mode
,
dilation
=
1
):
filter_s
=
(
filter_size
-
1
)
*
dilation
+
1
img_size
=
(
output_size
-
1
)
*
stride
+
filter_s
-
2
*
padding
if
not
caffe_mode
:
img_size
=
img_size
+
1
return
img_size
...
...
@@ -1376,6 +1388,12 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
conv_conf
.
stride_y
=
conv
.
stride_y
conv_conf
.
groups
=
conv
.
groups
conv_conf
.
caffe_mode
=
conv
.
caffe_mode
if
not
conv
.
dilation
:
conv
.
dilation
=
1
conv
.
dilation_y
=
1
else
:
conv_conf
.
dilation
=
conv
.
dilation
conv_conf
.
dilation_y
=
conv
.
dilation_y
if
not
trans
:
conv_conf
.
filter_channels
=
conv
.
channels
/
conv
.
groups
...
...
@@ -1383,20 +1401,20 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
get_img_size
(
input_layer_name
,
conv
.
channels
)
conv_conf
.
output_x
=
cnn_output_size
(
conv_conf
.
img_size
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
conv_conf
.
stride
,
conv_conf
.
caffe_mode
,
conv
.
dilation
)
conv_conf
.
output_y
=
cnn_output_size
(
conv_conf
.
img_size_y
,
conv_conf
.
filter_size_y
,
conv_conf
.
padding_y
,
conv_conf
.
stride_y
,
conv_conf
.
caffe_mode
)
conv_conf
.
stride_y
,
conv_conf
.
caffe_mode
,
conv
.
dilation_y
)
else
:
conv_conf
.
filter_channels
=
num_filters
/
conv
.
groups
conv_conf
.
output_x
,
conv_conf
.
output_y
=
\
get_img_size
(
input_layer_name
,
conv
.
channels
)
conv_conf
.
img_size
=
cnn_image_size
(
conv_conf
.
output_x
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
conv_conf
.
stride
,
conv_conf
.
caffe_mode
,
conv
.
dilation
)
conv_conf
.
img_size_y
=
cnn_image_size
(
conv_conf
.
output_y
,
conv_conf
.
filter_size_y
,
conv_conf
.
padding_y
,
conv_conf
.
stride_y
,
conv_conf
.
caffe_mode
)
conv_conf
.
stride_y
,
conv_conf
.
caffe_mode
,
conv
.
dilation_y
)
#caffe_mode: compute the output size using floor instead of ceil,
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
d7319c22
...
...
@@ -2571,7 +2571,9 @@ def img_conv_layer(input,
if
layer_type
:
if
dilation
>
1
or
dilation_y
>
1
:
assert
layer_type
in
[
"cudnn_conv"
,
"cudnn_convt"
]
assert
layer_type
in
[
"cudnn_conv"
,
"cudnn_convt"
,
"exconv"
,
"exconvt"
]
if
trans
:
assert
layer_type
in
[
"exconvt"
,
"cudnn_convt"
]
else
:
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
浏览文件 @
d7319c22
...
...
@@ -28,6 +28,8 @@ layers {
stride_y: 1
output_y: 227
img_size_y: 256
dilation: 1
dilation_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
浏览文件 @
d7319c22
...
...
@@ -28,6 +28,8 @@ layers {
stride_y: 1
output_y: 227
img_size_y: 256
dilation: 1
dilation_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
浏览文件 @
d7319c22
...
...
@@ -28,6 +28,8 @@ layers {
stride_y: 1
output_y: 48
img_size_y: 48
dilation: 1
dilation_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_maxout.protostr
浏览文件 @
d7319c22
...
...
@@ -30,6 +30,8 @@ layers {
stride_y: 1
output_y: 48
img_size_y: 48
dilation: 1
dilation_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
...
...
@@ -105,6 +107,8 @@ layers {
stride_y: 1
output_y: 24
img_size_y: 24
dilation: 1
dilation_y: 1
}
}
bias_parameter_name: "___conv_1__.wbias"
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_pad.protostr
浏览文件 @
d7319c22
...
...
@@ -30,6 +30,8 @@ layers {
stride_y: 1
output_y: 48
img_size_y: 48
dilation: 1
dilation_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_roi_pool_layer.protostr
浏览文件 @
d7319c22
...
...
@@ -36,6 +36,8 @@ layers {
stride_y: 1
output_y: 14
img_size_y: 14
dilation: 1
dilation_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录