Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d641d5ac
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
d641d5ac
编写于
2月 11, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments
上级
74f7aff3
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
93 addition
and
218 deletion
+93
-218
python/paddle/v2/fluid/layers/detection.py
python/paddle/v2/fluid/layers/detection.py
+88
-124
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+0
-87
python/paddle/v2/fluid/tests/object_detection/test_prior_boxes.py
...addle/v2/fluid/tests/object_detection/test_prior_boxes.py
+5
-7
未找到文件。
python/paddle/v2/fluid/layers/detection.py
浏览文件 @
d641d5ac
...
...
@@ -17,11 +17,8 @@ All layers just related to the detection neural network.
from
..layer_helper
import
LayerHelper
from
..framework
import
Variable
from
..param_attr
import
ParamAttr
from
..framework
import
Variable
from
layer_function_generator
import
autodoc
from
tensor
import
concat
from
nn
import
flatten
from
ops
import
reshape
import
math
__all__
=
[
...
...
@@ -30,91 +27,6 @@ __all__ = [
]
def
prior_box
(
input
,
image
,
min_sizes
,
max_sizes
,
aspect_ratios
,
variance
,
flip
=
False
,
clip
=
False
,
step_w
=
0.0
,
step_h
=
0.0
,
offset
=
0.5
,
name
=
None
):
"""
**Prior_box**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
the count of min_sizes, max_sizes and aspect_ratios, The size of the
box is in range(min_size, max_size) interval, which is generated in
sequence according to the aspect_ratios.
Args:
input(variable): The input feature data of PriorBox,
the layout is NCHW.
image(variable): The input image data of PriorBox, the
layout is NCHW.
min_sizes(list): the min sizes of generated prior boxes.
max_sizes(list): the max sizes of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
variance(list): the variances to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip aspect ratios.
clip(bool, optional, default=False)): Whether to clip
out-of-boundary boxes.
step_w(int, optional, default=0.0): Prior boxes step across
width, 0.0 for auto calculation.
step_h(int, optional, default=0.0): Prior boxes step across
height, 0.0 for auto calculation.
offset(float, optional, default=0.5): Prior boxes center offset.
name(str, optional, default=None): Name of the prior box layer.
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position. Where num_priors =
len(aspect_ratios) * len(min_sizes) + len(max_sizes)
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position. Where num_priors =
len(aspect_ratios) * len(min_sizes) + len(max_sizes)
Examples:
.. code-block:: python
data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
conv2d = fluid.layers.conv2d(
input=data, num_filters=2, filter_size=3)
box, var = fluid.layers.prior_box(conv2d, data,
min_size, max_size, aspect_ratio,
variance, flip, clip,
step_w, step_h, offset)
"""
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
box
=
helper
.
create_tmp_variable
(
dtype
)
var
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
"Image"
:
image
},
outputs
=
{
"Boxes"
:
box
,
"Variances"
:
var
},
attrs
=
{
'min_sizes'
:
min_sizes
,
'max_sizes'
:
max_sizes
,
'aspect_ratios'
:
aspect_ratios
,
'variances'
:
variance
,
'flip'
:
flip
,
'clip'
:
clip
,
'step_w'
:
step_w
,
'step_h'
:
step_h
,
'offset'
:
offset
})
return
box
,
var
def
prior_boxes
(
inputs
,
image
,
min_ratio
,
...
...
@@ -128,20 +40,19 @@ def prior_boxes(inputs,
variance
=
[
0.1
,
0.1
,
0.1
,
0.1
],
flip
=
False
,
clip
=
False
,
min_sizes
=
None
,
max_sizes
=
None
,
name
=
None
):
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the inputs produces many prior boxes respectly, the number
of prior boxes which is produced by inputs respectly is determined by
the count of min_ratio, max_ratio and aspect_ratios, The size of the
box is in range(min_ratio, max_ratio) interval, which is generated in
sequence according to the aspect_ratios.
The details of this algorithm, please refer the section 2.2 of SSD paper
(SSD: Single Shot MultiBox Detector)<https://arxiv.org/abs/1512.02325>`_ .
Args:
inputs(list): The list of input
variables, the format of all v
ariables is NCHW.
image(
v
ariable): The input image data of PriorBoxOp, the layout is NCHW.
inputs(list): The list of input
Variables, the format of all V
ariables is NCHW.
image(
V
ariable): The input image data of PriorBoxOp, the layout is NCHW.
min_ratio(int): the min ratio of generated prior boxes.
max_ratio(int): the max ratio of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
...
...
@@ -159,13 +70,17 @@ def prior_boxes(inputs,
to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip aspect ratios.
clip(bool, optional, default=False): Whether to clip out-of-boundary boxes.
min_sizes(list, optional, default=None): If `len(inputs) <=2`, min_sizes must
be set up, and the length of min_sizes should equal to the length of inputs.
max_sizes(list, optional, default=None): If `len(inputs) <=2`, max_sizes must
be set up, and the length of min_sizes should equal to the length of inputs.
name(str, optional, None): Name of the prior box layer.
Returns:
boxes(
v
ariable): the output prior boxes of PriorBoxOp. The layout is
boxes(
V
ariable): the output prior boxes of PriorBoxOp. The layout is
[num_priors, 4]. num_priors is the total box count of each
position of inputs.
Variances(
v
ariable): the expanded variances of PriorBoxOp. The layout
Variances(
V
ariable): the expanded variances of PriorBoxOp. The layout
is [num_priors, 4]. num_priors is the total box count of each
position of inputs
...
...
@@ -185,13 +100,60 @@ def prior_boxes(inputs,
flip=True,
clip=True)
"""
def
_prior_box_
(
input
,
image
,
min_sizes
,
max_sizes
,
aspect_ratios
,
variance
,
flip
=
False
,
clip
=
False
,
step_w
=
0.0
,
step_h
=
0.0
,
offset
=
0.5
,
name
=
None
):
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
box
=
helper
.
create_tmp_variable
(
dtype
)
var
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
"Image"
:
image
},
outputs
=
{
"Boxes"
:
box
,
"Variances"
:
var
},
attrs
=
{
'min_sizes'
:
min_sizes
,
'max_sizes'
:
max_sizes
,
'aspect_ratios'
:
aspect_ratios
,
'variances'
:
variance
,
'flip'
:
flip
,
'clip'
:
clip
,
'step_w'
:
step_w
,
'step_h'
:
step_h
,
'offset'
:
offset
})
return
box
,
var
def
_reshape_with_axis_
(
input
,
axis
=
1
):
if
not
(
axis
>
0
and
axis
<
len
(
input
.
shape
)):
raise
ValueError
(
"The axis should be smaller than the arity of input's shape."
)
new_shape
=
[
-
1
,
reduce
(
mul
,
input
.
shape
[
axis
:
len
(
input
.
shape
)],
1
)]
out
=
reshape
([
input
],
shape
=
new_shape
)
return
out
assert
isinstance
(
inputs
,
list
),
'inputs should be a list.'
num_layer
=
len
(
inputs
)
assert
num_layer
>
2
# TODO(zcd): currently, num_layer must be bigger than two.
min_sizes
=
[]
max_sizes
=
[]
if
num_layer
>
2
:
if
num_layer
<=
2
:
assert
min_sizes
is
not
None
and
max_sizes
is
not
None
assert
len
(
min_sizes
)
==
num_layer
and
len
(
max_sizes
)
==
num_layer
else
:
min_sizes
=
[]
max_sizes
=
[]
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
...
...
@@ -199,21 +161,29 @@ def prior_boxes(inputs,
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
aspect_ratios
:
if
not
(
isinstance
(
aspect_ratios
,
list
)
and
len
(
aspect_ratios
)
==
num_layer
):
raise
ValueError
(
'aspect_ratios should be list and the length of inputs '
'and aspect_ratios should be the same.'
)
if
step_h
:
assert
isinstance
(
step_h
,
list
)
and
len
(
step_h
)
==
num_layer
,
\
'step_h should be list and inputs and step_h should have same length'
if
not
(
isinstance
(
step_h
,
list
)
and
len
(
step_h
)
==
num_layer
):
raise
ValueError
(
'step_h should be list and the length of inputs and '
'step_h should be the same.'
)
if
step_w
:
assert
isinstance
(
step_w
,
list
)
and
len
(
step_w
)
==
num_layer
,
\
'step_w should be list and inputs and step_w should have same length'
if
not
(
isinstance
(
step_w
,
list
)
and
len
(
step_w
)
==
num_layer
):
raise
ValueError
(
'step_w should be list and the length of inputs and '
'step_w should be the same.'
)
if
steps
:
assert
isinstance
(
steps
,
list
)
and
len
(
steps
)
==
num_layer
,
\
'steps should be list and inputs and step_w should have same length'
if
not
(
isinstance
(
steps
,
list
)
and
len
(
steps
)
==
num_layer
):
raise
ValueError
(
'steps should be list and the length of inputs and '
'step_w should be the same.'
)
step_w
=
steps
step_h
=
steps
if
aspect_ratios
:
assert
isinstance
(
aspect_ratios
,
list
)
and
len
(
aspect_ratios
)
==
num_layer
,
\
'aspect_ratios should be list and inputs and aspect_ratios should '
\
'have same length'
box_results
=
[]
var_results
=
[]
...
...
@@ -230,10 +200,10 @@ def prior_boxes(inputs,
if
not
isinstance
(
aspect_ratio
,
list
):
aspect_ratio
=
[
aspect_ratio
]
box
,
var
=
prior_box
(
input
,
image
,
min_size
,
max_size
,
aspect_ratio
,
variance
,
flip
,
clip
,
step_w
[
i
]
if
step_w
else
0.0
,
step_h
[
i
]
if
step_w
else
0.0
,
offset
)
box
,
var
=
_prior_box_
(
input
,
image
,
min_size
,
max_size
,
aspect_ratio
,
variance
,
flip
,
clip
,
step_w
[
i
]
if
step_w
else
0.0
,
step_h
[
i
]
if
step_w
else
0.0
,
offset
)
box_results
.
append
(
box
)
var_results
.
append
(
var
)
...
...
@@ -242,17 +212,11 @@ def prior_boxes(inputs,
box
=
box_results
[
0
]
var
=
var_results
[
0
]
else
:
axis
=
3
reshaped_boxes
=
[]
reshaped_vars
=
[]
for
i
in
range
(
len
(
box_results
)):
reshaped_boxes
+=
[
flatten
(
box_results
[
i
],
axis
=
3
)]
reshaped_vars
+=
[
flatten
(
var_results
[
i
],
axis
=
3
)]
helper
=
LayerHelper
(
"concat"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
box
=
helper
.
create_tmp_variable
(
dtype
)
var
=
helper
.
create_tmp_variable
(
dtype
)
reshaped_boxes
.
append
(
_reshape_with_axis_
(
box_results
[
i
],
axis
=
3
))
reshaped_vars
.
append
(
_reshape_with_axis_
(
var_results
[
i
],
axis
=
3
))
box
=
concat
(
reshaped_boxes
)
var
=
concat
(
reshaped_vars
)
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
d641d5ac
...
...
@@ -21,8 +21,6 @@ from ..framework import Variable
from
..param_attr
import
ParamAttr
from
layer_function_generator
import
autodoc
from
tensor
import
concat
import
math
from
operator
import
mul
__all__
=
[
'fc'
,
...
...
@@ -66,8 +64,6 @@ __all__ = [
'nce'
,
'beam_search'
,
'row_conv'
,
'reshape_with_axis'
,
'flatten'
,
'multiplex'
,
'layer_norm'
,
]
...
...
@@ -3095,86 +3091,3 @@ def multiplex(inputs, index):
'Ids'
:
index
},
outputs
=
{
'Out'
:
[
out
]})
return
out
def
reshape_with_axis
(
input
,
axis
):
"""
**ReshapeWithAxis Layer**
ReshapeWithAxis is used to merge adjacent dimensions according to axis.
Args:
input(variable): The input tensor.
axis(list): The axis which is used to merge the adjacent dimensions.
Returns:
Variable: A tensor variable.
Examples:
.. code-block:: python
x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
reshaped = fluid.layers.reshape_with_axis(input=x, axis=[2])
reshaped.shape
>> [-1, 1024]
reshaped = fluid.layers.reshape_with_axis(input=x, axis=[1,3])
reshaped.shape
>> [-1, 96, 32]
"""
assert
isinstance
(
axis
,
list
),
"axis should be list."
assert
len
(
input
.
shape
)
>
len
(
axis
),
"the length of axis should be litter than input.shape's."
input_shape
=
input
.
shape
temp
=
0
for
ax
in
axis
:
assert
ax
<
len
(
input
.
shape
)
and
ax
>
0
,
\
'The data of Axis should be between 1 and len(input.shape)'
assert
ax
>
temp
,
'Axis should be incremented sequence'
temp
=
ax
axis
+=
[
len
(
input
.
shape
)]
new_shape
=
[]
for
i
in
range
(
len
(
axis
)
-
1
):
new_shape
+=
[
reduce
(
mul
,
input_shape
[
axis
[
i
]:
axis
[
i
+
1
]],
1
)]
new_shape
=
[
-
1
]
+
new_shape
helper
=
LayerHelper
(
'reshape'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'reshape'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'shape'
:
new_shape
})
return
out
def
flatten
(
input
,
axis
=
1
):
"""
**Flatten Layer**
ReshapeWithAxis is used to merge adjacent dimensions according to axis.
Args:
input(variable): The input tensor.
axis(int):
Returns:
Variable: A tensor variable.
Examples:
.. code-block:: python
x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
reshaped = fluid.layers.reshape_with_axis(input=x, axis=2)
reshaped.shape
>> [-1, 1024]
"""
assert
len
(
input
.
shape
)
>
axis
and
axis
>
0
,
\
"the axis should be litter than input.shape's."
input_shape
=
input
.
shape
new_shape
=
[
-
1
,
reduce
(
mul
,
input_shape
[
axis
:
len
(
input_shape
)],
1
)]
helper
=
LayerHelper
(
'reshape'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'reshape'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'shape'
:
new_shape
})
return
out
python/paddle/v2/fluid/tests/object_detection/test_prior_boxes.py
浏览文件 @
d641d5ac
...
...
@@ -51,15 +51,15 @@ def main(use_cuda):
if
use_cuda
:
# prior_box only support CPU.
return
box
,
var
=
prior_box_output
(
data_shape
=
[
3
,
224
,
224
])
data_shape
=
[
3
,
224
,
224
]
box
,
var
=
prior_box_output
(
data_shape
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
batch
=
[
128
]
for
i
in
range
(
1
):
# print("iteration : %d" % i)
for
_
in
range
(
1
):
x
=
np
.
random
.
random
(
batch
+
data_shape
).
astype
(
"float32"
)
tensor_x
=
core
.
LoDTensor
()
tensor_x
.
set
(
x
,
place
)
...
...
@@ -75,12 +75,10 @@ def main(use_cuda):
class
TestFitALine
(
unittest
.
TestCase
):
def
test_cpu
(
self
):
with
self
.
program_scope_guard
():
main
(
use_cuda
=
False
)
main
(
use_cuda
=
False
)
def
test_cuda
(
self
):
with
self
.
program_scope_guard
():
main
(
use_cuda
=
True
)
main
(
use_cuda
=
True
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录