Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d5c697e6
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d5c697e6
编写于
2月 27, 2017
作者:
Y
Yu Yang
提交者:
GitHub
2月 27, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into feature/EvaluatorToEvent
上级
173a81b5
c3caa842
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
440 addition
and
23 deletion
+440
-23
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+6
-6
paddle/py_paddle/dataprovider_converter.py
paddle/py_paddle/dataprovider_converter.py
+2
-4
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+2
-1
python/paddle/v2/data_feeder.py
python/paddle/v2/data_feeder.py
+100
-0
python/paddle/v2/data_type.py
python/paddle/v2/data_type.py
+2
-2
python/paddle/v2/dataset/__init__.py
python/paddle/v2/dataset/__init__.py
+0
-0
python/paddle/v2/dataset/config.py
python/paddle/v2/dataset/config.py
+8
-0
python/paddle/v2/dataset/mnist.py
python/paddle/v2/dataset/mnist.py
+39
-0
python/paddle/v2/tests/CMakeLists.txt
python/paddle/v2/tests/CMakeLists.txt
+2
-0
python/paddle/v2/tests/run_tests.sh
python/paddle/v2/tests/run_tests.sh
+36
-0
python/paddle/v2/tests/test_data_feeder.py
python/paddle/v2/tests/test_data_feeder.py
+238
-0
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+5
-10
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
d5c697e6
...
...
@@ -44,13 +44,13 @@ def main():
topology
=
cost
,
parameters
=
parameters
,
event_handler
=
event_handler
,
num_passes
=
100
,
batch_size
=
200
,
# batch size should be refactor in Data reader
data_types
=
{
# data_types will be removed, It should be in
batch_size
=
32
,
# batch size should be refactor in Data reader
data_types
=
[
# data_types will be removed, It should be in
# network topology
'pixel'
:
images
.
type
,
'label'
:
label
.
type
})
(
'pixel'
,
images
.
type
),
(
'label'
,
label
.
type
)],
reader_dict
=
{
'pixel'
:
0
,
'label'
:
1
}
)
if
__name__
==
'__main__'
:
...
...
paddle/py_paddle/dataprovider_converter.py
浏览文件 @
d5c697e6
...
...
@@ -23,7 +23,8 @@ __all__ = ['DataProviderConverter']
class
IScanner
(
object
):
def
__init__
(
self
,
input_type
,
pos
):
self
.
input_type
=
input_type
assert
isinstance
(
self
.
input_type
,
dp2
.
InputType
)
if
not
isinstance
(
self
.
input_type
,
dp2
.
InputType
):
raise
ValueError
(
"input type should be dataprovider2.InputType"
)
self
.
pos
=
pos
def
scan
(
self
,
dat
):
...
...
@@ -50,7 +51,6 @@ class DenseScanner(IScanner):
def
finish_scan
(
self
,
argument
):
assert
isinstance
(
argument
,
swig_paddle
.
Arguments
)
assert
isinstance
(
self
.
input_type
,
dp2
.
InputType
)
if
self
.
__mat__
.
dtype
!=
numpy
.
float32
:
self
.
__mat__
=
self
.
__mat__
.
astype
(
numpy
.
float32
)
m
=
swig_paddle
.
Matrix
.
createDenseFromNumpy
(
self
.
__mat__
,
True
,
False
)
...
...
@@ -63,7 +63,6 @@ class SparseBinaryScanner(IScanner):
self
.
__rows__
=
[
0
]
self
.
__cols__
=
[]
self
.
__height__
=
0
self
.
__nnz__
=
0
self
.
__value__
=
[]
def
scan
(
self
,
dat
):
...
...
@@ -76,7 +75,6 @@ class SparseBinaryScanner(IScanner):
def
finish_scan
(
self
,
argument
):
assert
isinstance
(
argument
,
swig_paddle
.
Arguments
)
assert
isinstance
(
self
.
input_type
,
dp2
.
InputType
)
m
=
swig_paddle
.
Matrix
.
createSparse
(
self
.
__height__
,
self
.
input_type
.
dim
,
len
(
self
.
__cols__
),
...
...
python/paddle/v2/__init__.py
浏览文件 @
d5c697e6
...
...
@@ -18,12 +18,13 @@ import parameters
import
trainer
import
event
import
data_type
import
data_feeder
import
attr
import
py_paddle.swig_paddle
as
api
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_type'
,
'attr'
'event'
,
'data_type'
,
'attr'
,
'data_feeder'
]
...
...
python/paddle/v2/data_feeder.py
0 → 100644
浏览文件 @
d5c697e6
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
py_paddle
import
swig_paddle
from
py_paddle
import
DataProviderConverter
import
data_type
__all__
=
[
'DataFeeder'
]
class
DataFeeder
(
DataProviderConverter
):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data entries. Each data entry in the list is one sampe.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.
The example usage:
data_types = [('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
reader_dict = {'image':0, 'label':1}
feeder = DataFeeder(data_types=data_types, reader_dict=reader_dict)
minibatch_data = [
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ), # first sample
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ) # second sample
]
# or minibatch_data = [
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ], # first sample
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ] # second sample
# ]
arg = feeder(minibatch_data)
"""
def
__init__
(
self
,
data_types
,
reader_dict
):
"""
:param data_types: A list to specify data name and type. Each item is
a tuple of (data_name, data_type). For example:
[('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
:type data_types: A list of tuple
:param reader_dict: A dictionary to specify the position of each data
in the input data.
:type reader_dict: dict()
"""
self
.
input_names
=
[]
input_types
=
[]
self
.
reader_dict
=
reader_dict
for
each
in
data_types
:
self
.
input_names
.
append
(
each
[
0
])
assert
isinstance
(
each
[
1
],
data_type
.
InputType
)
input_types
.
append
(
each
[
1
])
DataProviderConverter
.
__init__
(
self
,
input_types
)
def
convert
(
self
,
dat
,
argument
=
None
):
"""
:param dat: A list of mini-batch data. Each sample is a list or tuple
one feature or multiple features.
for example:
[
([0.2, 0.2], ), # first sample
([0.8, 0.3], ), # second sample
]
or,
[
[[0.2, 0.2], ], # first sample
[[0.8, 0.3], ], # second sample
]
:type dat: List
:param argument: An Arguments object contains this mini-batch data with
one or multiple features. The Arguments definition is
in the API.
:type argument: swig_paddle.Arguments
"""
def
reorder_data
(
data
):
retv
=
[]
for
each
in
data
:
reorder
=
[]
for
name
in
self
.
input_names
:
reorder
.
append
(
each
[
self
.
reader_dict
[
name
]])
retv
.
append
(
reorder
)
return
retv
return
DataProviderConverter
.
convert
(
self
,
reorder_data
(
dat
),
argument
)
python/paddle/v2/data_type.py
浏览文件 @
d5c697e6
...
...
@@ -14,9 +14,9 @@
from
paddle.trainer.PyDataProvider2
import
\
InputType
,
dense_vector
,
sparse_binary_vector
,
\
sparse_vector
,
integer_value
sparse_vector
,
integer_value
,
integer_value_sequence
__all__
=
[
'InputType'
,
'dense_vector'
,
'sparse_binary_vector'
,
'sparse_vector'
,
'integer_value'
'integer_value'
,
'integer_value_sequence'
]
python/paddle/v2/dataset/__init__.py
0 → 100644
浏览文件 @
d5c697e6
python/paddle/v2/dataset/config.py
0 → 100644
浏览文件 @
d5c697e6
import
os
__all__
=
[
'DATA_HOME'
]
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle_data_set'
)
if
not
os
.
path
.
exists
(
DATA_HOME
):
os
.
makedirs
(
DATA_HOME
)
python/paddle/v2/dataset/mnist.py
0 → 100644
浏览文件 @
d5c697e6
import
sklearn.datasets.mldata
import
sklearn.model_selection
import
numpy
from
config
import
DATA_HOME
__all__
=
[
'train_creator'
,
'test_creator'
]
def
__mnist_reader_creator__
(
data
,
target
):
def
reader
():
n_samples
=
data
.
shape
[
0
]
for
i
in
xrange
(
n_samples
):
yield
(
data
[
i
]
/
255.0
).
astype
(
numpy
.
float32
),
int
(
target
[
i
])
return
reader
TEST_SIZE
=
10000
data
=
sklearn
.
datasets
.
mldata
.
fetch_mldata
(
"MNIST original"
,
data_home
=
DATA_HOME
)
X_train
,
X_test
,
y_train
,
y_test
=
sklearn
.
model_selection
.
train_test_split
(
data
.
data
,
data
.
target
,
test_size
=
TEST_SIZE
,
random_state
=
0
)
def
train_creator
():
return
__mnist_reader_creator__
(
X_train
,
y_train
)
def
test_creator
():
return
__mnist_reader_creator__
(
X_test
,
y_test
)
def
unittest
():
assert
len
(
list
(
test_creator
()()))
==
TEST_SIZE
if
__name__
==
'__main__'
:
unittest
()
python/paddle/v2/tests/CMakeLists.txt
浏览文件 @
d5c697e6
...
...
@@ -2,3 +2,5 @@ add_test(NAME test_v2_layer
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_layer.py
WORKING_DIRECTORY
${
PROJ_ROOT
}
/python/paddle
)
add_test
(
NAME test_v2_api
COMMAND bash
${
PROJ_ROOT
}
/python/paddle/v2/tests/run_tests.sh
${
PYTHON_EXECUTABLE
}
)
python/paddle/v2/tests/run_tests.sh
0 → 100755
浏览文件 @
d5c697e6
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
pushd
`
dirname
$0
`
>
/dev/null
SCRIPTPATH
=
$PWD
popd
>
/dev/null
cd
$SCRIPTPATH
$1
-m
pip
install
../../../../paddle/dist/
*
.whl
test_list
=
"test_data_feeder.py"
export
PYTHONPATH
=
$PWD
/../../../../python/
for
fn
in
$test_list
do
echo
"test
$fn
"
$1
$fn
if
[
$?
-ne
0
]
;
then
exit
1
fi
done
python/paddle/v2/tests/test_data_feeder.py
0 → 100644
浏览文件 @
d5c697e6
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
py_paddle.swig_paddle
as
api
import
numpy
as
np
from
paddle.v2
import
data_type
from
paddle.v2.data_feeder
import
DataFeeder
class
DataFeederTest
(
unittest
.
TestCase
):
def
dense_reader
(
self
,
size
):
data
=
np
.
random
.
random
(
size
)
return
data
def
sparse_binary_reader
(
self
,
high
,
size_limit
,
non_empty
=
False
):
num
=
np
.
random
.
randint
(
size_limit
)
# num could be 0
while
non_empty
and
num
==
0
:
num
=
np
.
random
.
randint
(
size_limit
)
return
np
.
random
.
randint
(
high
,
size
=
num
).
tolist
()
def
test_dense
(
self
):
def
compare
(
input
):
feeder
=
DataFeeder
([(
'image'
,
data_type
.
dense_vector
(
784
))],
{
'image'
:
0
})
arg
=
feeder
(
input
)
output
=
arg
.
getSlotValue
(
0
).
copyToNumpyMat
()
input
=
np
.
array
(
input
,
dtype
=
'float32'
)
self
.
assertAlmostEqual
(
input
.
all
(),
output
.
all
())
# test numpy array
batch_size
=
32
dim
=
784
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
self
.
dense_reader
(
dim
))
data
.
append
(
each_sample
)
compare
(
data
)
# each feature is a list
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
self
.
dense_reader
(
dim
).
tolist
())
data
.
append
(
each_sample
)
compare
(
data
)
# test tuple
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
(
self
.
dense_reader
(
dim
).
tolist
(),
)
data
.
append
(
each_sample
)
compare
(
data
)
def
test_sparse_binary
(
self
):
dim
=
10000
batch_size
=
32
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
self
.
sparse_binary_reader
(
dim
,
50
))
data
.
append
(
each_sample
)
feeder
=
DataFeeder
([(
'input'
,
data_type
.
sparse_binary_vector
(
dim
))],
{
'input'
:
0
})
arg
=
feeder
(
data
)
output
=
arg
.
getSlotValue
(
0
)
assert
isinstance
(
output
,
api
.
Matrix
)
for
i
in
xrange
(
batch_size
):
self
.
assertEqual
(
output
.
getSparseRowCols
(
i
),
data
[
i
][
0
])
def
test_sparse
(
self
):
dim
=
10000
batch_size
=
32
v
=
[]
w
=
[]
data
=
[]
for
dat
in
xrange
(
batch_size
):
each_sample
=
[]
a
=
self
.
sparse_binary_reader
(
dim
,
40
,
non_empty
=
True
)
b
=
self
.
dense_reader
(
len
(
a
)).
tolist
()
v
.
append
(
a
)
w
.
append
(
np
.
array
(
b
,
dtype
=
"float32"
))
each_sample
.
append
(
zip
(
a
,
b
))
data
.
append
(
each_sample
)
feeder
=
DataFeeder
([(
'input'
,
data_type
.
sparse_vector
(
dim
))],
{
'input'
:
0
})
arg
=
feeder
(
data
)
output
=
arg
.
getSlotValue
(
0
)
assert
isinstance
(
output
,
api
.
Matrix
)
for
i
in
xrange
(
batch_size
):
self
.
assertEqual
(
output
.
getSparseRowCols
(
i
),
v
[
i
])
cols_value
=
output
.
getSparseRowColsVal
(
i
)
value
=
[
val
[
1
]
for
val
in
cols_value
]
value
=
np
.
array
(
value
,
dtype
=
"float32"
)
self
.
assertAlmostEqual
(
value
.
all
(),
w
[
i
].
all
())
def
test_integer
(
self
):
dim
=
100
batch_size
=
32
index
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
np
.
random
.
randint
(
dim
))
index
.
append
(
each_sample
)
feeder
=
DataFeeder
([(
'input'
,
data_type
.
integer_value
(
dim
))],
{
'input'
:
0
})
arg
=
feeder
(
index
)
output
=
arg
.
getSlotIds
(
0
).
copyToNumpyArray
()
index
=
np
.
array
(
index
,
dtype
=
'int'
)
self
.
assertEqual
(
output
.
all
(),
index
.
flatten
().
all
())
def
test_integer_sequence
(
self
):
dim
=
10000
batch_size
=
32
start
=
[
0
]
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
self
.
sparse_binary_reader
(
dim
,
30
,
non_empty
=
True
))
data
.
append
(
each_sample
)
start
.
append
(
len
(
each_sample
[
0
])
+
start
[
-
1
])
feeder
=
DataFeeder
([(
'input'
,
data_type
.
integer_value_sequence
(
dim
))],
{
'input'
:
0
})
arg
=
feeder
(
data
)
output_data
=
arg
.
getSlotIds
(
0
).
copyToNumpyArray
()
output_start
=
arg
.
getSlotSequenceStartPositions
(
0
).
copyToNumpyArray
()
index
=
[]
for
dat
in
data
:
index
.
extend
(
x
for
x
in
dat
[
0
])
# only one feature, so dat[0]
index
=
np
.
array
(
index
,
dtype
=
'int'
)
start
=
np
.
array
(
start
,
dtype
=
'int'
)
self
.
assertEqual
(
output_data
.
all
(),
index
.
all
())
self
.
assertEqual
(
output_start
.
all
(),
start
.
all
())
def
test_multiple_features
(
self
):
batch_size
=
2
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
np
.
random
.
randint
(
10
))
each_sample
.
append
(
self
.
sparse_binary_reader
(
20000
,
40
,
non_empty
=
True
))
each_sample
.
append
(
self
.
dense_reader
(
100
))
data
.
append
(
each_sample
)
# test multiple features
data_types
=
[(
'fea0'
,
data_type
.
dense_vector
(
100
)),
(
'fea1'
,
data_type
.
sparse_binary_vector
(
20000
)),
(
'fea2'
,
data_type
.
integer_value
(
10
))]
feeder
=
DataFeeder
(
data_types
,
{
'fea0'
:
2
,
'fea1'
:
1
,
'fea2'
:
0
})
arg
=
feeder
(
data
)
output_dense
=
arg
.
getSlotValue
(
0
).
copyToNumpyMat
()
output_sparse
=
arg
.
getSlotValue
(
1
)
output_index
=
arg
.
getSlotIds
(
2
).
copyToNumpyArray
()
for
i
in
xrange
(
batch_size
):
self
.
assertEqual
(
output_dense
[
i
].
all
(),
data
[
i
][
2
].
all
())
self
.
assertEqual
(
output_sparse
.
getSparseRowCols
(
i
),
data
[
i
][
1
])
self
.
assertEqual
(
output_index
[
i
],
data
[
i
][
0
])
# reader returns 3 features, but only use 2 features
data_types
=
[(
'fea0'
,
data_type
.
dense_vector
(
100
)),
(
'fea2'
,
data_type
.
integer_value
(
10
))]
feeder
=
DataFeeder
(
data_types
,
{
'fea0'
:
2
,
'fea2'
:
0
})
arg
=
feeder
(
data
)
output_dense
=
arg
.
getSlotValue
(
0
).
copyToNumpyMat
()
output_index
=
arg
.
getSlotIds
(
1
).
copyToNumpyArray
()
for
i
in
xrange
(
batch_size
):
self
.
assertEqual
(
output_dense
[
i
].
all
(),
data
[
i
][
2
].
all
())
self
.
assertEqual
(
output_index
[
i
],
data
[
i
][
0
])
# reader returns 3 featreus, one is duplicate data
data_types
=
[(
'fea0'
,
data_type
.
dense_vector
(
100
)),
(
'fea1'
,
data_type
.
sparse_binary_vector
(
20000
)),
(
'fea2'
,
data_type
.
integer_value
(
10
)),
(
'fea3'
,
data_type
.
dense_vector
(
100
))]
feeder
=
DataFeeder
(
data_types
,
{
'fea0'
:
2
,
'fea1'
:
1
,
'fea2'
:
0
,
'fea3'
:
2
})
arg
=
feeder
(
data
)
fea0
=
arg
.
getSlotValue
(
0
).
copyToNumpyMat
()
fea1
=
arg
.
getSlotValue
(
1
)
fea2
=
arg
.
getSlotIds
(
2
).
copyToNumpyArray
()
fea3
=
arg
.
getSlotValue
(
3
).
copyToNumpyMat
()
for
i
in
xrange
(
batch_size
):
self
.
assertEqual
(
fea0
[
i
].
all
(),
data
[
i
][
2
].
all
())
self
.
assertEqual
(
fea1
.
getSparseRowCols
(
i
),
data
[
i
][
1
])
self
.
assertEqual
(
fea2
[
i
],
data
[
i
][
0
])
self
.
assertEqual
(
fea3
[
i
].
all
(),
data
[
i
][
2
].
all
())
def
test_multiple_features_tuple
(
self
):
batch_size
=
2
data
=
[]
for
i
in
xrange
(
batch_size
):
a
=
np
.
random
.
randint
(
10
)
b
=
self
.
sparse_binary_reader
(
20000
,
40
,
non_empty
=
True
)
c
=
self
.
dense_reader
(
100
)
each_sample
=
(
a
,
b
,
c
)
data
.
append
(
each_sample
)
# test multiple features
data_types
=
[(
'fea0'
,
data_type
.
dense_vector
(
100
)),
(
'fea1'
,
data_type
.
sparse_binary_vector
(
20000
)),
(
'fea2'
,
data_type
.
integer_value
(
10
))]
feeder
=
DataFeeder
(
data_types
,
{
'fea0'
:
2
,
'fea1'
:
1
,
'fea2'
:
0
})
arg
=
feeder
(
data
)
out_dense
=
arg
.
getSlotValue
(
0
).
copyToNumpyMat
()
out_sparse
=
arg
.
getSlotValue
(
1
)
out_index
=
arg
.
getSlotIds
(
2
).
copyToNumpyArray
()
for
i
in
xrange
(
batch_size
):
self
.
assertEqual
(
out_dense
[
i
].
all
(),
data
[
i
][
2
].
all
())
self
.
assertEqual
(
out_sparse
.
getSparseRowCols
(
i
),
data
[
i
][
1
])
self
.
assertEqual
(
out_index
[
i
],
data
[
i
][
0
])
if
__name__
==
'__main__'
:
api
.
initPaddle
(
"--use_gpu=0"
)
unittest
.
main
()
python/paddle/v2/trainer.py
浏览文件 @
d5c697e6
...
...
@@ -2,7 +2,7 @@ import collections
import
py_paddle.swig_paddle
as
api
from
paddle.proto.ModelConfig_pb2
import
ModelConfig
from
py_paddle
import
DataProviderConvert
er
from
data_feeder
import
DataFeed
er
from
.
import
event
as
v2_event
from
.
import
layer
as
v2_layer
...
...
@@ -69,7 +69,8 @@ class SGD(ITrainer):
test_data_reader
=
None
,
event_handler
=
None
,
batch_size
=
32
,
data_types
=
None
):
data_types
=
None
,
reader_dict
=
None
):
"""
Training method. Will train num_passes of input data.
...
...
@@ -107,13 +108,7 @@ class SGD(ITrainer):
assert
isinstance
(
pass_evaluator
,
api
.
Evaluator
)
out_args
=
api
.
Arguments
.
createArguments
(
0
)
data_types_lists
=
[]
for
each
in
topology
.
input_layer_names
:
if
each
not
in
data_types
:
raise
ValueError
()
data_types_lists
.
append
(
data_types
[
each
])
converter
=
DataProviderConverter
(
input_types
=
data_types_lists
)
feeder
=
DataFeeder
(
data_types
,
reader_dict
)
for
pass_id
in
xrange
(
num_passes
):
event_handler
(
v2_event
.
BeginPass
(
pass_id
))
...
...
@@ -127,7 +122,7 @@ class SGD(ITrainer):
v2_event
.
BeginIteration
(
pass_id
=
pass_id
,
batch_id
=
batch_id
))
pass_type
=
updater
.
startBatch
(
len
(
data_batch
))
gm
.
forwardBackward
(
convert
er
(
data_batch
),
out_args
,
pass_type
)
gm
.
forwardBackward
(
feed
er
(
data_batch
),
out_args
,
pass_type
)
gm
.
eval
(
pass_evaluator
)
gm
.
eval
(
batch_evaluator
)
for
each_param
in
gm
.
getParameters
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录