提交 d5a6c81d 编写于 作者: W wangmeng28

Update docs for factorization machine layer

上级 6a0cfd94
......@@ -36,8 +36,7 @@ namespace paddle {
*
* The detailed calculation for forward and backward can be found at this paper:
*
* Rendle, Steffen. Factorization machines. IEEE 10th International
* Conference on Data Mining (ICDM). IEEE, 2010.
* Factorization machines.
*
* The config file api is factorization_machine.
*/
......@@ -59,7 +58,7 @@ private:
// The result of input matrix * latent vector matrix that will be used in
// both forward and backward step
MatrixPtr inputMulFactor_;
// Temporary calculation result store
// Store temporary calculation result
MatrixPtr tmpOut_;
MatrixPtr tmpSum_;
// Negative identity matrix
......
......@@ -3876,7 +3876,7 @@ def recurrent_layer(input,
:type input: LayerOutput
:param act: Activation type. TanhActivation is the default activation.
:type act: BaseActivation
:param bias_attr: The parameter attribute for bias. If this parameter is set to
:param bias_attr: The parameter attribute for bias. If this parameter is set to
False or an object whose type is not ParameterAttribute,
no bias is defined. If the parameter is set to True,
the bias is initialized to zero.
......@@ -7307,8 +7307,7 @@ def factorization_machine(input,
each latent vector is k.
For details of Factorization Machine, please refer to the paper:
Rendle, Steffen. Factorization machines. IEEE 10th International
Conference on Data Mining (ICDM). IEEE, 2010.
Factorization machines.
.. code-block:: python
factor_machine = factorization_machine(input=input_layer, factor_size=10)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册