Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d5702896
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
接近 2 年 前同步成功
通知
706
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d5702896
编写于
6月 19, 2020
作者:
X
xinyingxinying
提交者:
GitHub
6月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add cutmix (#958)
* Add cutmix op(
#88
)
上级
83caf99f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
291 addition
and
1 deletion
+291
-1
configs/anchor_free/README.md
configs/anchor_free/README.md
+2
-0
configs/anchor_free/fcos_dcn_r50_fpn_1x_cutmix.yml
configs/anchor_free/fcos_dcn_r50_fpn_1x_cutmix.yml
+187
-0
ppdet/data/reader.py
ppdet/data/reader.py
+15
-0
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+87
-1
未找到文件。
configs/anchor_free/README.md
浏览文件 @
d5702896
...
@@ -31,6 +31,8 @@
...
@@ -31,6 +31,8 @@
| FCOS | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 39.8 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_1x.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_r50_fpn_1x.yml
)
|
| FCOS | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 39.8 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_1x.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_r50_fpn_1x.yml
)
|
| FCOS+multiscale_train | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 42.0 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_multiscale_2x.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_r50_fpn_multiscale_2x.yml
)
|
| FCOS+multiscale_train | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 42.0 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_multiscale_2x.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_r50_fpn_multiscale_2x.yml
)
|
| FCOS+DCN | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 44.4 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_dcn_r50_fpn_1x.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_dcn_r50_fpn_1x.yml
)
|
| FCOS+DCN | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 44.4 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_dcn_r50_fpn_1x.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_dcn_r50_fpn_1x.yml
)
|
| FCOS+DCN+cutmix | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 44.5 | - | [下载链接]
(https://paddlemodels.bj.bcebos.com/object_detection/fcos_dcn_r50_fpn_1x_cutmix.pdparams) |
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_dcn_r50_fpn_1x_cutmix.yml
)
|
**注意:**
**注意:**
...
...
configs/anchor_free/fcos_dcn_r50_fpn_1x_cutmix.yml
0 → 100644
浏览文件 @
d5702896
architecture
:
FCOS
max_iters
:
90000
use_gpu
:
true
snapshot_iter
:
5000
log_smooth_window
:
20
log_iter
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric
:
COCO
weights
:
output/fcos_dcn_r50_fpn_1x_cutmix/model_final
num_classes
:
80
FCOS
:
backbone
:
ResNet
fpn
:
FPN
fcos_head
:
FCOSHead
ResNet
:
norm_type
:
affine_channel
norm_decay
:
0.
depth
:
50
feature_maps
:
[
3
,
4
,
5
]
freeze_at
:
2
dcn_v2_stages
:
[
3
,
4
,
5
]
FPN
:
min_level
:
3
max_level
:
7
num_chan
:
256
use_c5
:
false
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
]
has_extra_convs
:
true
FCOSHead
:
num_classes
:
80
fpn_stride
:
[
8
,
16
,
32
,
64
,
128
]
num_convs
:
4
norm_type
:
"
gn"
fcos_loss
:
FCOSLoss
norm_reg_targets
:
True
centerness_on_reg
:
True
use_dcn_in_tower
:
True
nms
:
MultiClassNMS
MultiClassNMS
:
score_threshold
:
0.025
nms_top_k
:
1000
keep_top_k
:
100
nms_threshold
:
0.6
background_label
:
-1
FCOSLoss
:
loss_alpha
:
0.25
loss_gamma
:
2.0
iou_loss_type
:
"
giou"
reg_weights
:
1.0
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
60000
,
80000
]
-
!LinearWarmup
start_factor
:
0.3333333333333333
steps
:
500
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
TrainReader
:
inputs_def
:
fields
:
[
'
image'
,
'
im_info'
,
'
fcos_target'
]
dataset
:
!COCODataSet
image_dir
:
train2017
anno_path
:
annotations/instances_train2017.json
dataset_dir
:
dataset/coco
with_background
:
false
sample_transforms
:
-
!DecodeImage
to_rgb
:
true
with_cutmix
:
True
-
!CutmixImage
alpha
:
1.5
beta
:
1.5
-
!RandomFlipImage
prob
:
0.5
-
!NormalizeImage
is_channel_first
:
false
is_scale
:
true
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
-
!ResizeImage
target_size
:
800
max_size
:
1333
interp
:
1
use_cv2
:
true
-
!Permute
to_bgr
:
false
channel_first
:
true
batch_transforms
:
-
!PadBatch
pad_to_stride
:
128
use_padded_im_info
:
false
-
!Gt2FCOSTarget
object_sizes_boundary
:
[
64
,
128
,
256
,
512
]
center_sampling_radius
:
1.5
downsample_ratios
:
[
8
,
16
,
32
,
64
,
128
]
norm_reg_targets
:
True
batch_size
:
2
shuffle
:
true
worker_num
:
4
use_process
:
false
cutmix_epoch
:
10
EvalReader
:
inputs_def
:
fields
:
[
'
image'
,
'
im_id'
,
'
im_shape'
,
'
im_info'
]
dataset
:
!COCODataSet
image_dir
:
val2017
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco
with_background
:
false
sample_transforms
:
-
!DecodeImage
to_rgb
:
true
with_mixup
:
false
-
!NormalizeImage
is_channel_first
:
false
is_scale
:
true
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
-
!ResizeImage
target_size
:
800
max_size
:
1333
interp
:
1
use_cv2
:
true
-
!Permute
channel_first
:
true
to_bgr
:
false
batch_transforms
:
-
!PadBatch
pad_to_stride
:
128
use_padded_im_info
:
true
batch_size
:
1
shuffle
:
false
worker_num
:
1
use_process
:
false
TestReader
:
inputs_def
:
# set image_shape if needed
fields
:
[
'
image'
,
'
im_id'
,
'
im_shape'
,
'
im_info'
]
dataset
:
!ImageFolder
anno_path
:
annotations/instances_val2017.json
with_background
:
false
sample_transforms
:
-
!DecodeImage
to_rgb
:
true
with_mixup
:
false
-
!NormalizeImage
is_channel_first
:
false
is_scale
:
true
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
-
!ResizeImage
interp
:
1
max_size
:
1333
target_size
:
800
use_cv2
:
true
-
!Permute
channel_first
:
true
to_bgr
:
false
batch_transforms
:
-
!PadBatch
pad_to_stride
:
128
use_padded_im_info
:
true
batch_size
:
1
shuffle
:
false
ppdet/data/reader.py
浏览文件 @
d5702896
...
@@ -167,6 +167,8 @@ class Reader(object):
...
@@ -167,6 +167,8 @@ class Reader(object):
Default True.
Default True.
mixup_epoch (int): mixup epoc number. Default is -1, meaning
mixup_epoch (int): mixup epoc number. Default is -1, meaning
not use mixup.
not use mixup.
cutmix_epoch (int): cutmix epoc number. Default is -1, meaning
not use cutmix.
class_aware_sampling (bool): whether use class-aware sampling or not.
class_aware_sampling (bool): whether use class-aware sampling or not.
Default False.
Default False.
worker_num (int): number of working threads/processes.
worker_num (int): number of working threads/processes.
...
@@ -191,6 +193,7 @@ class Reader(object):
...
@@ -191,6 +193,7 @@ class Reader(object):
drop_last
=
False
,
drop_last
=
False
,
drop_empty
=
True
,
drop_empty
=
True
,
mixup_epoch
=-
1
,
mixup_epoch
=-
1
,
cutmix_epoch
=-
1
,
class_aware_sampling
=
False
,
class_aware_sampling
=
False
,
worker_num
=-
1
,
worker_num
=-
1
,
use_process
=
False
,
use_process
=
False
,
...
@@ -241,6 +244,7 @@ class Reader(object):
...
@@ -241,6 +244,7 @@ class Reader(object):
# sampling
# sampling
self
.
_mixup_epoch
=
mixup_epoch
self
.
_mixup_epoch
=
mixup_epoch
self
.
_cutmix_epoch
=
cutmix_epoch
self
.
_class_aware_sampling
=
class_aware_sampling
self
.
_class_aware_sampling
=
class_aware_sampling
self
.
_load_img
=
False
self
.
_load_img
=
False
...
@@ -289,6 +293,10 @@ class Reader(object):
...
@@ -289,6 +293,10 @@ class Reader(object):
logger
.
debug
(
"Disable mixup for dataset samples "
logger
.
debug
(
"Disable mixup for dataset samples "
"less than 2 samples"
)
"less than 2 samples"
)
self
.
_mixup_epoch
=
-
1
self
.
_mixup_epoch
=
-
1
if
self
.
_cutmix_epoch
>
0
and
len
(
self
.
indexes
)
<
2
:
logger
.
info
(
"Disable cutmix for dataset samples "
"less than 2 samples"
)
self
.
_cutmix_epoch
=
-
1
if
self
.
_epoch
<
0
:
if
self
.
_epoch
<
0
:
self
.
_epoch
=
0
self
.
_epoch
=
0
...
@@ -346,6 +354,13 @@ class Reader(object):
...
@@ -346,6 +354,13 @@ class Reader(object):
if
self
.
_load_img
:
if
self
.
_load_img
:
sample
[
'mixup'
][
'image'
]
=
self
.
_load_image
(
sample
[
'mixup'
][
sample
[
'mixup'
][
'image'
]
=
self
.
_load_image
(
sample
[
'mixup'
][
'im_file'
])
'im_file'
])
if
self
.
_epoch
<
self
.
_cutmix_epoch
:
num
=
len
(
self
.
indexes
)
mix_idx
=
np
.
random
.
randint
(
1
,
num
)
sample
[
'cutmix'
]
=
copy
.
deepcopy
(
self
.
_roidbs
[
mix_idx
])
if
self
.
_load_img
:
sample
[
'cutmix'
][
'image'
]
=
self
.
_load_image
(
sample
[
'cutmix'
][
'im_file'
])
batch
.
append
(
sample
)
batch
.
append
(
sample
)
bs
+=
1
bs
+=
1
...
...
ppdet/data/transform/operators.py
浏览文件 @
d5702896
...
@@ -89,21 +89,25 @@ class BaseOperator(object):
...
@@ -89,21 +89,25 @@ class BaseOperator(object):
@
register_op
@
register_op
class
DecodeImage
(
BaseOperator
):
class
DecodeImage
(
BaseOperator
):
def
__init__
(
self
,
to_rgb
=
True
,
with_mixup
=
False
):
def
__init__
(
self
,
to_rgb
=
True
,
with_mixup
=
False
,
with_cutmix
=
False
):
""" Transform the image data to numpy format.
""" Transform the image data to numpy format.
Args:
Args:
to_rgb (bool): whether to convert BGR to RGB
to_rgb (bool): whether to convert BGR to RGB
with_mixup (bool): whether or not to mixup image and gt_bbbox/gt_score
with_mixup (bool): whether or not to mixup image and gt_bbbox/gt_score
with_cutmix (bool): whether or not to cutmix image and gt_bbbox/gt_score
"""
"""
super
(
DecodeImage
,
self
).
__init__
()
super
(
DecodeImage
,
self
).
__init__
()
self
.
to_rgb
=
to_rgb
self
.
to_rgb
=
to_rgb
self
.
with_mixup
=
with_mixup
self
.
with_mixup
=
with_mixup
self
.
with_cutmix
=
with_cutmix
if
not
isinstance
(
self
.
to_rgb
,
bool
):
if
not
isinstance
(
self
.
to_rgb
,
bool
):
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
if
not
isinstance
(
self
.
with_mixup
,
bool
):
if
not
isinstance
(
self
.
with_mixup
,
bool
):
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
if
not
isinstance
(
self
.
with_cutmix
,
bool
):
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
def
__call__
(
self
,
sample
,
context
=
None
):
def
__call__
(
self
,
sample
,
context
=
None
):
""" load image if 'im_file' field is not empty but 'image' is"""
""" load image if 'im_file' field is not empty but 'image' is"""
...
@@ -142,6 +146,10 @@ class DecodeImage(BaseOperator):
...
@@ -142,6 +146,10 @@ class DecodeImage(BaseOperator):
# decode mixup image
# decode mixup image
if
self
.
with_mixup
and
'mixup'
in
sample
:
if
self
.
with_mixup
and
'mixup'
in
sample
:
self
.
__call__
(
sample
[
'mixup'
],
context
)
self
.
__call__
(
sample
[
'mixup'
],
context
)
# decode cutmix image
if
self
.
with_cutmix
and
'cutmix'
in
sample
:
self
.
__call__
(
sample
[
'cutmix'
],
context
)
return
sample
return
sample
...
@@ -1094,6 +1102,84 @@ class MixupImage(BaseOperator):
...
@@ -1094,6 +1102,84 @@ class MixupImage(BaseOperator):
return
sample
return
sample
@
register_op
class
CutmixImage
(
BaseOperator
):
def
__init__
(
self
,
alpha
=
1.5
,
beta
=
1.5
):
"""
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://https://arxiv.org/abs/1905.04899
Cutmix image and gt_bbbox/gt_score
Args:
alpha (float): alpha parameter of beta distribute
beta (float): beta parameter of beta distribute
"""
super
(
CutmixImage
,
self
).
__init__
()
self
.
alpha
=
alpha
self
.
beta
=
beta
if
self
.
alpha
<=
0.0
:
raise
ValueError
(
"alpha shold be positive in {}"
.
format
(
self
))
if
self
.
beta
<=
0.0
:
raise
ValueError
(
"beta shold be positive in {}"
.
format
(
self
))
def
_rand_bbox
(
self
,
img1
,
img2
,
factor
):
""" _rand_bbox """
h
=
max
(
img1
.
shape
[
0
],
img2
.
shape
[
0
])
w
=
max
(
img1
.
shape
[
1
],
img2
.
shape
[
1
])
cut_rat
=
np
.
sqrt
(
1.
-
factor
)
cut_w
=
np
.
int
(
w
*
cut_rat
)
cut_h
=
np
.
int
(
h
*
cut_rat
)
# uniform
cx
=
np
.
random
.
randint
(
w
)
cy
=
np
.
random
.
randint
(
h
)
bbx1
=
np
.
clip
(
cx
-
cut_w
//
2
,
0
,
w
)
bby1
=
np
.
clip
(
cy
-
cut_h
//
2
,
0
,
h
)
bbx2
=
np
.
clip
(
cx
+
cut_w
//
2
,
0
,
w
)
bby2
=
np
.
clip
(
cy
+
cut_h
//
2
,
0
,
h
)
img_1
=
np
.
zeros
((
h
,
w
,
img1
.
shape
[
2
]),
'float32'
)
img_1
[:
img1
.
shape
[
0
],
:
img1
.
shape
[
1
],
:]
=
\
img1
.
astype
(
'float32'
)
img_2
=
np
.
zeros
((
h
,
w
,
img2
.
shape
[
2
]),
'float32'
)
img_2
[:
img2
.
shape
[
0
],
:
img2
.
shape
[
1
],
:]
=
\
img2
.
astype
(
'float32'
)
img_1
[
bby1
:
bby2
,
bbx1
:
bbx2
,
:]
=
img2
[
bby1
:
bby2
,
bbx1
:
bbx2
,
:]
return
img_1
def
__call__
(
self
,
sample
,
context
=
None
):
if
'cutmix'
not
in
sample
:
return
sample
factor
=
np
.
random
.
beta
(
self
.
alpha
,
self
.
beta
)
factor
=
max
(
0.0
,
min
(
1.0
,
factor
))
if
factor
>=
1.0
:
sample
.
pop
(
'cutmix'
)
return
sample
if
factor
<=
0.0
:
return
sample
[
'cutmix'
]
img1
=
sample
[
'image'
]
img2
=
sample
[
'cutmix'
][
'image'
]
img
=
self
.
_rand_bbox
(
img1
,
img2
,
factor
)
gt_bbox1
=
sample
[
'gt_bbox'
]
gt_bbox2
=
sample
[
'cutmix'
][
'gt_bbox'
]
gt_bbox
=
np
.
concatenate
((
gt_bbox1
,
gt_bbox2
),
axis
=
0
)
gt_class1
=
sample
[
'gt_class'
]
gt_class2
=
sample
[
'cutmix'
][
'gt_class'
]
gt_class
=
np
.
concatenate
((
gt_class1
,
gt_class2
),
axis
=
0
)
gt_score1
=
sample
[
'gt_score'
]
gt_score2
=
sample
[
'cutmix'
][
'gt_score'
]
gt_score
=
np
.
concatenate
(
(
gt_score1
*
factor
,
gt_score2
*
(
1.
-
factor
)),
axis
=
0
)
sample
[
'image'
]
=
img
sample
[
'gt_bbox'
]
=
gt_bbox
sample
[
'gt_score'
]
=
gt_score
sample
[
'gt_class'
]
=
gt_class
sample
[
'h'
]
=
img
.
shape
[
0
]
sample
[
'w'
]
=
img
.
shape
[
1
]
sample
.
pop
(
'cutmix'
)
return
sample
@
register_op
@
register_op
class
RandomInterpImage
(
BaseOperator
):
class
RandomInterpImage
(
BaseOperator
):
def
__init__
(
self
,
target_size
=
0
,
max_size
=
0
):
def
__init__
(
self
,
target_size
=
0
,
max_size
=
0
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录