Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d4c2f2f2
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d4c2f2f2
编写于
11月 27, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the doc of layers.py
上级
e4c8de9e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
24 addition
and
24 deletion
+24
-24
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+24
-24
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
d4c2f2f2
...
@@ -2985,8 +2985,8 @@ def spp_layer(input,
...
@@ -2985,8 +2985,8 @@ def spp_layer(input,
A layer performs spatial pyramid pooling.
A layer performs spatial pyramid pooling.
Reference:
Reference:
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
`
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
https://arxiv.org/abs/1406.4729
https://arxiv.org/abs/1406.4729
`_
The example usage is:
The example usage is:
...
@@ -3087,8 +3087,8 @@ def img_cmrnorm_layer(input,
...
@@ -3087,8 +3087,8 @@ def img_cmrnorm_layer(input,
Response normalization across feature maps.
Response normalization across feature maps.
Reference:
Reference:
ImageNet Classification with Deep Convolutional Neural Networks
`
ImageNet Classification with Deep Convolutional Neural Networks
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
`_
The example usage is:
The example usage is:
...
@@ -3154,9 +3154,9 @@ def batch_norm_layer(input,
...
@@ -3154,9 +3154,9 @@ def batch_norm_layer(input,
y_i &
\\
gets
\\
gamma
\\
hat{x_i} +
\\
beta
\\
qquad &//\ scale\ and\ shift
y_i &
\\
gets
\\
gamma
\\
hat{x_i} +
\\
beta
\\
qquad &//\ scale\ and\ shift
Reference:
Reference:
Batch Normalization: Accelerating Deep Network Training by Reducing
`
Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift
Internal Covariate Shift
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
`_
The example usage is:
The example usage is:
...
@@ -5413,10 +5413,10 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
...
@@ -5413,10 +5413,10 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
to be devided by groups.
to be devided by groups.
Reference:
Reference:
Maxout Networks
`
Maxout Networks
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
`_
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
`
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
https://arxiv.org/pdf/1312.6082v4.pdf
https://arxiv.org/pdf/1312.6082v4.pdf
`_
.. math::
.. math::
y_{si+j} = \max_k x_{gsi + sk + j}
y_{si+j} = \max_k x_{gsi + sk + j}
...
@@ -5481,9 +5481,9 @@ def ctc_layer(input,
...
@@ -5481,9 +5481,9 @@ def ctc_layer(input,
alignment between the inputs and the target labels is unknown.
alignment between the inputs and the target labels is unknown.
Reference:
Reference:
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
`
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
`_
Note:
Note:
Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
...
@@ -5555,9 +5555,9 @@ def warp_ctc_layer(input,
...
@@ -5555,9 +5555,9 @@ def warp_ctc_layer(input,
install it to :code:`third_party/install/warpctc` directory.
install it to :code:`third_party/install/warpctc` directory.
Reference:
Reference:
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
`
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
`_
Note:
Note:
- Let num_classes represents the category number. Considering the 'blank'
- Let num_classes represents the category number. Considering the 'blank'
...
@@ -5777,8 +5777,8 @@ def nce_layer(input,
...
@@ -5777,8 +5777,8 @@ def nce_layer(input,
Noise-contrastive estimation.
Noise-contrastive estimation.
Reference:
Reference:
A fast and simple algorithm for training neural probabilistic language
`
A fast and simple algorithm for training neural probabilistic language
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
`_
The example usage is:
The example usage is:
...
@@ -5893,8 +5893,8 @@ def rank_cost(left,
...
@@ -5893,8 +5893,8 @@ def rank_cost(left,
A cost Layer for learning to rank using gradient descent.
A cost Layer for learning to rank using gradient descent.
Reference:
Reference:
Learning to Rank using Gradient Descent
`
Learning to Rank using Gradient Descent
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
`_
.. math::
.. math::
...
@@ -6429,8 +6429,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
...
@@ -6429,8 +6429,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
smooth_{L1}(x) =
\\
begin{cases} 0.5x^2&
\\
text{if}
\\
|x| < 1
\\\\
|x|-0.5&
\\
text{otherwise} \end{cases}
smooth_{L1}(x) =
\\
begin{cases} 0.5x^2&
\\
text{if}
\\
|x| < 1
\\\\
|x|-0.5&
\\
text{otherwise} \end{cases}
Reference:
Reference:
Fast R-CNN
`
Fast R-CNN
https://arxiv.org/pdf/1504.08083v2.pdf
https://arxiv.org/pdf/1504.08083v2.pdf
`_
The example usage is:
The example usage is:
...
@@ -6636,8 +6636,8 @@ def prelu_layer(input,
...
@@ -6636,8 +6636,8 @@ def prelu_layer(input,
The Parametric Relu activation that actives outputs with a learnable weight.
The Parametric Relu activation that actives outputs with a learnable weight.
Reference:
Reference:
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
`
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
`_
.. math::
.. math::
z_i &
\\
quad if
\\
quad z_i > 0
\\\\
z_i &
\\
quad if
\\
quad z_i > 0
\\\\
...
@@ -6733,8 +6733,8 @@ def gated_unit_layer(input,
...
@@ -6733,8 +6733,8 @@ def gated_unit_layer(input,
product between :match:`X'` and :math:`\sigma` is finally returned.
product between :match:`X'` and :math:`\sigma` is finally returned.
Reference:
Reference:
Language Modeling with Gated Convolutional Networks
`
Language Modeling with Gated Convolutional Networks
https://arxiv.org/abs/1612.08083
https://arxiv.org/abs/1612.08083
`_
.. math::
.. math::
y=
\\
text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)
y=
\\
text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录