Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d446fd2f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d446fd2f
编写于
8月 23, 2022
作者:
D
Double_V
提交者:
GitHub
8月 23, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[fgd] set stop_gradient as True and refine code (#6700)
上级
76b581d5
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
125 addition
and
127 deletion
+125
-127
ppdet/slim/distill.py
ppdet/slim/distill.py
+125
-127
未找到文件。
ppdet/slim/distill.py
浏览文件 @
d446fd2f
...
@@ -234,26 +234,23 @@ class FGDFeatureLoss(nn.Layer):
...
@@ -234,26 +234,23 @@ class FGDFeatureLoss(nn.Layer):
Paddle version of `Focal and Global Knowledge Distillation for Detectors`
Paddle version of `Focal and Global Knowledge Distillation for Detectors`
Args:
Args:
student_channels(int): Number of channels in the student's feature map.
student_channels(int): The number of channels in the student's FPN feature map. Default to 256.
teacher_channels(int): Number of channels in the teacher's feature map.
teacher_channels(int): The number of channels in the teacher's FPN feature map. Default to 256.
temp (float, optional): Temperature coefficient. Defaults to 0.5.
temp (float, optional): The temperature coefficient. Defaults to 0.5.
name (str): the loss name of the layer
alpha_fgd (float, optional): The weight of fg_loss. Defaults to 0.001
alpha_fgd (float, optional): Weight of fg_loss. Defaults to 0.001
beta_fgd (float, optional): The weight of bg_loss. Defaults to 0.0005
beta_fgd (float, optional): Weight of bg_loss. Defaults to 0.0005
gamma_fgd (float, optional): The weight of mask_loss. Defaults to 0.001
gamma_fgd (float, optional): Weight of mask_loss. Defaults to 0.001
lambda_fgd (float, optional): The weight of relation_loss. Defaults to 0.000005
lambda_fgd (float, optional): Weight of relation_loss. Defaults to 0.000005
"""
"""
def
__init__
(
def
__init__
(
self
,
self
,
student_channels
=
256
,
student_channels
,
teacher_channels
=
256
,
teacher_channels
,
temp
=
0.5
,
name
=
None
,
alpha_fgd
=
0.001
,
temp
=
0.5
,
beta_fgd
=
0.0005
,
alpha_fgd
=
0.001
,
gamma_fgd
=
0.001
,
beta_fgd
=
0.0005
,
lambda_fgd
=
0.000005
):
gamma_fgd
=
0.001
,
lambda_fgd
=
0.000005
):
super
(
FGDFeatureLoss
,
self
).
__init__
()
super
(
FGDFeatureLoss
,
self
).
__init__
()
self
.
temp
=
temp
self
.
temp
=
temp
self
.
alpha_fgd
=
alpha_fgd
self
.
alpha_fgd
=
alpha_fgd
...
@@ -272,27 +269,29 @@ class FGDFeatureLoss(nn.Layer):
...
@@ -272,27 +269,29 @@ class FGDFeatureLoss(nn.Layer):
stride
=
1
,
stride
=
1
,
padding
=
0
,
padding
=
0
,
weight_attr
=
kaiming_init
)
weight_attr
=
kaiming_init
)
student_channels
=
teacher_channels
else
:
else
:
self
.
align
=
None
self
.
align
=
None
self
.
conv_mask_s
=
nn
.
Conv2D
(
self
.
conv_mask_s
=
nn
.
Conv2D
(
teacher
_channels
,
1
,
kernel_size
=
1
,
weight_attr
=
kaiming_init
)
student
_channels
,
1
,
kernel_size
=
1
,
weight_attr
=
kaiming_init
)
self
.
conv_mask_t
=
nn
.
Conv2D
(
self
.
conv_mask_t
=
nn
.
Conv2D
(
teacher_channels
,
1
,
kernel_size
=
1
,
weight_attr
=
kaiming_init
)
teacher_channels
,
1
,
kernel_size
=
1
,
weight_attr
=
kaiming_init
)
self
.
channel_add_conv_s
=
nn
.
Sequential
(
self
.
stu_conv_block
=
nn
.
Sequential
(
nn
.
Conv2D
(
nn
.
Conv2D
(
teacher
_channels
,
student
_channels
,
teacher
_channels
//
2
,
student
_channels
//
2
,
kernel_size
=
1
,
kernel_size
=
1
,
weight_attr
=
zeros_init
),
weight_attr
=
zeros_init
),
nn
.
LayerNorm
([
teacher
_channels
//
2
,
1
,
1
]),
nn
.
LayerNorm
([
student
_channels
//
2
,
1
,
1
]),
nn
.
ReLU
(),
nn
.
ReLU
(),
nn
.
Conv2D
(
nn
.
Conv2D
(
teacher
_channels
//
2
,
student
_channels
//
2
,
teacher
_channels
,
student
_channels
,
kernel_size
=
1
,
kernel_size
=
1
,
weight_attr
=
zeros_init
))
weight_attr
=
zeros_init
))
self
.
channel_add_conv_t
=
nn
.
Sequential
(
self
.
tea_conv_block
=
nn
.
Sequential
(
nn
.
Conv2D
(
nn
.
Conv2D
(
teacher_channels
,
teacher_channels
,
teacher_channels
//
2
,
teacher_channels
//
2
,
...
@@ -306,72 +305,69 @@ class FGDFeatureLoss(nn.Layer):
...
@@ -306,72 +305,69 @@ class FGDFeatureLoss(nn.Layer):
kernel_size
=
1
,
kernel_size
=
1
,
weight_attr
=
zeros_init
))
weight_attr
=
zeros_init
))
def
gc_block
(
self
,
feature
,
t
=
0.5
):
def
spatial_channel_attention
(
self
,
x
,
t
=
0.5
):
"""
shape
=
paddle
.
shape
(
x
)
"""
shape
=
paddle
.
shape
(
feature
)
N
,
C
,
H
,
W
=
shape
N
,
C
,
H
,
W
=
shape
_f
=
paddle
.
abs
(
feature
)
_f
=
paddle
.
abs
(
x
)
s_map
=
paddle
.
reshape
(
s
patial
_map
=
paddle
.
reshape
(
paddle
.
mean
(
paddle
.
mean
(
_f
,
axis
=
1
,
keepdim
=
True
)
/
t
,
[
N
,
-
1
])
_f
,
axis
=
1
,
keepdim
=
True
)
/
t
,
[
N
,
-
1
])
s
_map
=
F
.
softmax
(
s
_map
,
axis
=
1
,
dtype
=
"float32"
)
*
H
*
W
s
patial_map
=
F
.
softmax
(
spatial
_map
,
axis
=
1
,
dtype
=
"float32"
)
*
H
*
W
s
_attention
=
paddle
.
reshape
(
s
_map
,
[
N
,
H
,
W
])
s
patial_att
=
paddle
.
reshape
(
spatial
_map
,
[
N
,
H
,
W
])
c_map
=
paddle
.
mean
(
c
hannel
_map
=
paddle
.
mean
(
paddle
.
mean
(
paddle
.
mean
(
_f
,
axis
=
2
,
keepdim
=
False
),
axis
=
2
,
keepdim
=
False
)
_f
,
axis
=
2
,
keepdim
=
False
),
axis
=
2
,
keepdim
=
False
)
c
_attention
=
F
.
softmax
(
c
_map
/
t
,
axis
=
1
,
dtype
=
"float32"
)
*
C
c
hannel_att
=
F
.
softmax
(
channel
_map
/
t
,
axis
=
1
,
dtype
=
"float32"
)
*
C
return
s_attention
,
c_attention
return
[
spatial_att
,
channel_att
]
def
spatial_pool
(
self
,
x
,
in_type
):
def
spatial_pool
(
self
,
x
,
mode
=
"teacher"
):
batch
,
channel
,
width
,
height
=
x
.
shape
batch
,
channel
,
width
,
height
=
x
.
shape
input_x
=
x
x_copy
=
x
# [N, C, H * W]
x_copy
=
paddle
.
reshape
(
x_copy
,
[
batch
,
channel
,
height
*
width
])
input_x
=
paddle
.
reshape
(
input_x
,
[
batch
,
channel
,
height
*
width
])
x_copy
=
x_copy
.
unsqueeze
(
1
)
# [N, 1, C, H * W]
if
mode
.
lower
()
==
"student"
:
input_x
=
input_x
.
unsqueeze
(
1
)
# [N, 1, H, W]
if
in_type
==
0
:
context_mask
=
self
.
conv_mask_s
(
x
)
context_mask
=
self
.
conv_mask_s
(
x
)
else
:
else
:
context_mask
=
self
.
conv_mask_t
(
x
)
context_mask
=
self
.
conv_mask_t
(
x
)
# [N, 1, H * W]
context_mask
=
paddle
.
reshape
(
context_mask
,
[
batch
,
1
,
height
*
width
])
context_mask
=
paddle
.
reshape
(
context_mask
,
[
batch
,
1
,
height
*
width
])
# [N, 1, H * W]
context_mask
=
F
.
softmax
(
context_mask
,
axis
=
2
)
context_mask
=
F
.
softmax
(
context_mask
,
axis
=
2
)
# [N, 1, H * W, 1]
context_mask
=
context_mask
.
unsqueeze
(
-
1
)
context_mask
=
context_mask
.
unsqueeze
(
-
1
)
# [N, 1, C, 1]
context
=
paddle
.
matmul
(
x_copy
,
context_mask
)
context
=
paddle
.
matmul
(
input_x
,
context_mask
)
# [N, C, 1, 1]
context
=
paddle
.
reshape
(
context
,
[
batch
,
channel
,
1
,
1
])
context
=
paddle
.
reshape
(
context
,
[
batch
,
channel
,
1
,
1
])
return
context
return
context
def
get_mask_loss
(
self
,
C_s
,
C_t
,
S_s
,
S_t
):
def
mask_loss
(
self
,
stu_channel_att
,
tea_channel_att
,
stu_spatial_att
,
mask_loss
=
paddle
.
sum
(
paddle
.
abs
((
C_s
-
C_t
)))
/
len
(
C_s
)
+
paddle
.
sum
(
tea_spatial_att
):
paddle
.
abs
((
S_s
-
S_t
)))
/
len
(
S_s
)
def
_func
(
a
,
b
):
return
paddle
.
sum
(
paddle
.
abs
(
a
-
b
))
/
len
(
a
)
mask_loss
=
_func
(
stu_channel_att
,
tea_channel_att
)
+
_func
(
stu_spatial_att
,
tea_spatial_att
)
return
mask_loss
return
mask_loss
def
get_fea_loss
(
self
,
preds_S
,
preds_T
,
Mask_fg
,
Mask_bg
,
C_s
,
C_t
,
S_s
,
def
feature_loss
(
self
,
stu_feature
,
tea_feature
,
Mask_fg
,
Mask_bg
,
S_t
):
tea_channel_att
,
tea_spatial_att
):
Mask_fg
=
Mask_fg
.
unsqueeze
(
axis
=
1
)
Mask_fg
=
Mask_fg
.
unsqueeze
(
axis
=
1
)
Mask_bg
=
Mask_bg
.
unsqueeze
(
axis
=
1
)
Mask_bg
=
Mask_bg
.
unsqueeze
(
axis
=
1
)
C_t
=
C_
t
.
unsqueeze
(
axis
=-
1
)
tea_channel_att
=
tea_channel_at
t
.
unsqueeze
(
axis
=-
1
)
C_t
=
C_
t
.
unsqueeze
(
axis
=-
1
)
tea_channel_att
=
tea_channel_at
t
.
unsqueeze
(
axis
=-
1
)
S_t
=
S_
t
.
unsqueeze
(
axis
=
1
)
tea_spatial_att
=
tea_spatial_at
t
.
unsqueeze
(
axis
=
1
)
fea_t
=
paddle
.
multiply
(
preds_T
,
paddle
.
sqrt
(
S_
t
))
fea_t
=
paddle
.
multiply
(
tea_feature
,
paddle
.
sqrt
(
tea_spatial_at
t
))
fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
C_
t
))
fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
tea_channel_at
t
))
fg_fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
Mask_fg
))
fg_fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
Mask_fg
))
bg_fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
Mask_bg
))
bg_fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
Mask_bg
))
fea_s
=
paddle
.
multiply
(
preds_S
,
paddle
.
sqrt
(
S_
t
))
fea_s
=
paddle
.
multiply
(
stu_feature
,
paddle
.
sqrt
(
tea_spatial_at
t
))
fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
C_
t
))
fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
tea_channel_at
t
))
fg_fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
Mask_fg
))
fg_fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
Mask_fg
))
bg_fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
Mask_bg
))
bg_fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
Mask_bg
))
...
@@ -380,18 +376,12 @@ class FGDFeatureLoss(nn.Layer):
...
@@ -380,18 +376,12 @@ class FGDFeatureLoss(nn.Layer):
return
fg_loss
,
bg_loss
return
fg_loss
,
bg_loss
def
get_rela_loss
(
self
,
preds_S
,
preds_T
):
def
relation_loss
(
self
,
stu_feature
,
tea_feature
):
context_s
=
self
.
spatial_pool
(
preds_S
,
0
)
context_s
=
self
.
spatial_pool
(
stu_feature
,
"student"
)
context_t
=
self
.
spatial_pool
(
preds_T
,
1
)
context_t
=
self
.
spatial_pool
(
tea_feature
,
"teacher"
)
out_s
=
preds_S
out_s
=
stu_feature
+
self
.
stu_conv_block
(
context_s
)
out_t
=
preds_T
out_t
=
tea_feature
+
self
.
tea_conv_block
(
context_t
)
channel_add_s
=
self
.
channel_add_conv_s
(
context_s
)
out_s
=
out_s
+
channel_add_s
channel_add_t
=
self
.
channel_add_conv_t
(
context_t
)
out_t
=
out_t
+
channel_add_t
rela_loss
=
F
.
mse_loss
(
out_s
,
out_t
,
reduction
=
"sum"
)
/
len
(
out_s
)
rela_loss
=
F
.
mse_loss
(
out_s
,
out_t
,
reduction
=
"sum"
)
/
len
(
out_s
)
...
@@ -401,90 +391,98 @@ class FGDFeatureLoss(nn.Layer):
...
@@ -401,90 +391,98 @@ class FGDFeatureLoss(nn.Layer):
mask
[
xl
:
xr
,
yl
:
yr
]
=
paddle
.
maximum
(
mask
[
xl
:
xr
,
yl
:
yr
],
value
)
mask
[
xl
:
xr
,
yl
:
yr
]
=
paddle
.
maximum
(
mask
[
xl
:
xr
,
yl
:
yr
],
value
)
return
mask
return
mask
def
forward
(
self
,
preds_S
,
preds_T
,
inputs
):
def
forward
(
self
,
stu_feature
,
tea_feature
,
inputs
):
"""Forward function.
"""Forward function.
Args:
Args:
preds_S
(Tensor): Bs*C*H*W, student's feature map
stu_feature
(Tensor): Bs*C*H*W, student's feature map
preds_T
(Tensor): Bs*C*H*W, teacher's feature map
tea_feature
(Tensor): Bs*C*H*W, teacher's feature map
inputs: The inputs with gt bbox and input shape info.
inputs: The inputs with gt bbox and input shape info.
"""
"""
assert
preds_S
.
shape
[
-
2
:]
==
preds_T
.
shape
[
-
2
:],
\
assert
stu_feature
.
shape
[
-
2
:]
==
stu_feature
.
shape
[
-
2
:],
\
f
'The shape of Student feature
{
preds_S
.
shape
}
and Teacher feature
{
preds_T
.
shape
}
should be the same.'
f
'The shape of Student feature
{
stu_feature
.
shape
}
and Teacher feature
{
tea_feature
.
shape
}
should be the same.'
assert
"gt_bbox"
in
inputs
.
keys
()
and
"im_shape"
in
inputs
.
keys
(
),
"ERROR! FGDFeatureLoss need gt_bbox and im_shape as inputs."
gt_bboxes
=
inputs
[
'gt_bbox'
]
gt_bboxes
=
inputs
[
'gt_bbox'
]
assert
len
(
gt_bboxes
)
==
preds_S
.
shape
[
0
],
"error"
ins_shape
=
[
inputs
[
'im_shape'
][
i
]
for
i
in
range
(
inputs
[
'im_shape'
].
shape
[
0
])
]
# select index
index_gt
=
[]
index_gt
=
[]
for
i
in
range
(
len
(
gt_bboxes
)):
for
i
in
range
(
len
(
gt_bboxes
)):
if
gt_bboxes
[
i
].
size
>
2
:
if
gt_bboxes
[
i
].
size
>
2
:
index_gt
.
append
(
i
)
index_gt
.
append
(
i
)
index_gt_t
=
paddle
.
to_tensor
(
index_gt
)
# to tensor
# only distill feature with labeled GTbox
preds_S
=
paddle
.
index_select
(
preds_S
,
index_gt_t
)
if
len
(
index_gt
)
!=
len
(
gt_bboxes
):
preds_T
=
paddle
.
index_select
(
preds_T
,
index_gt_t
)
index_gt_t
=
paddle
.
to_tensor
(
index_gt
)
assert
preds_S
.
shape
==
preds_T
.
shape
,
"error"
preds_S
=
paddle
.
index_select
(
preds_S
,
index_gt_t
)
preds_T
=
paddle
.
index_select
(
preds_T
,
index_gt_t
)
img_metas_tmp
=
[{
'img_shape'
:
inputs
[
'im_shape'
][
i
]
}
for
i
in
range
(
inputs
[
'im_shape'
].
shape
[
0
])]
img_metas
=
[
img_metas_tmp
[
c
]
for
c
in
index_gt
]
gt_bboxes
=
[
gt_bboxes
[
c
]
for
c
in
index_gt
]
assert
len
(
gt_bboxes
)
==
len
(
img_metas
),
"error"
assert
len
(
gt_bboxes
)
==
preds_T
.
shape
[
0
],
"error"
ins_shape
=
[
ins_shape
[
c
]
for
c
in
index_gt
]
gt_bboxes
=
[
gt_bboxes
[
c
]
for
c
in
index_gt
]
assert
len
(
gt_bboxes
)
==
preds_T
.
shape
[
0
],
f
"The number of selected GT box [
{
len
(
gt_bboxes
)
}
] should be same with first dim of input tensor [
{
preds_T
.
shape
[
0
]
}
]."
if
self
.
align
is
not
None
:
if
self
.
align
is
not
None
:
preds_S
=
self
.
align
(
preds_S
)
stu_feature
=
self
.
align
(
stu_feature
)
N
,
C
,
H
,
W
=
preds_S
.
shape
N
,
C
,
H
,
W
=
stu_feature
.
shape
S_attention_t
,
C_attention_t
=
self
.
gc_block
(
preds_T
,
self
.
temp
)
tea_spatial_att
,
tea_channel_att
=
self
.
spatial_channel_attention
(
S_attention_s
,
C_attention_s
=
self
.
gc_block
(
preds_S
,
self
.
temp
)
tea_feature
,
self
.
temp
)
stu_spatial_att
,
stu_channel_att
=
self
.
spatial_channel_attention
(
stu_feature
,
self
.
temp
)
Mask_fg
=
paddle
.
zeros
(
tea_spatial_att
.
shape
)
Mask_bg
=
paddle
.
ones_like
(
tea_spatial_att
)
one_tmp
=
paddle
.
ones
([
*
tea_spatial_att
.
shape
[
1
:]])
zero_tmp
=
paddle
.
zeros
([
*
tea_spatial_att
.
shape
[
1
:]])
mask_fg
.
stop_gradient
=
True
Mask_bg
.
stop_gradient
=
True
one_tmp
.
stop_gradient
=
True
zero_tmp
.
stop_gradient
=
True
Mask_fg
=
paddle
.
zeros
(
S_attention_t
.
shape
)
Mask_bg
=
paddle
.
ones_like
(
S_attention_t
)
one_tmp
=
paddle
.
ones
([
*
S_attention_t
.
shape
[
1
:]])
zero_tmp
=
paddle
.
zeros
([
*
S_attention_t
.
shape
[
1
:]])
wmin
,
wmax
,
hmin
,
hmax
,
area
=
[],
[],
[],
[],
[]
wmin
,
wmax
,
hmin
,
hmax
,
area
=
[],
[],
[],
[],
[]
for
i
in
range
(
N
):
for
i
in
range
(
N
):
new_boxxes
=
paddle
.
ones_like
(
gt_bboxes
[
i
])
tmp_box
=
paddle
.
ones_like
(
gt_bboxes
[
i
])
new_boxxes
[:,
0
]
=
gt_bboxes
[
i
][:,
0
]
/
img_metas
[
i
][
'img_shape'
][
tmp_box
.
stop_gradient
=
True
1
]
*
W
tmp_box
[:,
0
]
=
gt_bboxes
[
i
][:,
0
]
/
ins_shape
[
i
][
1
]
*
W
new_boxxes
[:,
2
]
=
gt_bboxes
[
i
][:,
2
]
/
img_metas
[
i
][
'img_shape'
][
tmp_box
[:,
2
]
=
gt_bboxes
[
i
][:,
2
]
/
ins_shape
[
i
][
1
]
*
W
1
]
*
W
tmp_box
[:,
1
]
=
gt_bboxes
[
i
][:,
1
]
/
ins_shape
[
i
][
0
]
*
H
new_boxxes
[:,
1
]
=
gt_bboxes
[
i
][:,
1
]
/
img_metas
[
i
][
'img_shape'
][
tmp_box
[:,
3
]
=
gt_bboxes
[
i
][:,
3
]
/
ins_shape
[
i
][
0
]
*
H
0
]
*
H
new_boxxes
[:,
3
]
=
gt_bboxes
[
i
][:,
3
]
/
img_metas
[
i
][
'img_shape'
][
zero
=
paddle
.
zeros_like
(
tmp_box
[:,
0
],
dtype
=
"int32"
)
0
]
*
H
ones
=
paddle
.
ones_like
(
tmp_box
[:,
2
],
dtype
=
"int32"
)
zero
=
paddle
.
zeros_like
(
new_boxxes
[:,
0
],
dtype
=
"int32"
)
zero
.
stop_gradient
=
True
ones
=
paddle
.
ones_like
(
new_boxxes
[:,
2
],
dtype
=
"int32"
)
ones
.
stop_gradient
=
True
wmin
.
append
(
wmin
.
append
(
paddle
.
cast
(
paddle
.
floor
(
new_boxxes
[:,
0
]),
"int32"
).
maximum
(
paddle
.
cast
(
paddle
.
floor
(
tmp_box
[:,
0
]),
"int32"
).
maximum
(
zero
))
zero
))
wmax
.
append
(
paddle
.
cast
(
paddle
.
ceil
(
tmp_box
[:,
2
]),
"int32"
))
wmax
.
append
(
paddle
.
cast
(
paddle
.
ceil
(
new_boxxes
[:,
2
]),
"int32"
))
hmin
.
append
(
hmin
.
append
(
paddle
.
cast
(
paddle
.
floor
(
new_boxxes
[:,
1
]),
"int32"
).
maximum
(
paddle
.
cast
(
paddle
.
floor
(
tmp_box
[:,
1
]),
"int32"
).
maximum
(
zero
))
zero
))
hmax
.
append
(
paddle
.
cast
(
paddle
.
ceil
(
tmp_box
[:,
3
]),
"int32"
))
hmax
.
append
(
paddle
.
cast
(
paddle
.
ceil
(
new_boxxes
[:,
3
]),
"int32"
))
area
=
1.0
/
(
area
_recip
=
1.0
/
(
hmax
[
i
].
reshape
([
1
,
-
1
])
+
1
-
hmin
[
i
].
reshape
([
1
,
-
1
]))
/
(
hmax
[
i
].
reshape
([
1
,
-
1
])
+
1
-
hmin
[
i
].
reshape
([
1
,
-
1
]))
/
(
wmax
[
i
].
reshape
([
1
,
-
1
])
+
1
-
wmin
[
i
].
reshape
([
1
,
-
1
]))
wmax
[
i
].
reshape
([
1
,
-
1
])
+
1
-
wmin
[
i
].
reshape
([
1
,
-
1
]))
for
j
in
range
(
len
(
gt_bboxes
[
i
])):
for
j
in
range
(
len
(
gt_bboxes
[
i
])):
Mask_fg
[
i
]
=
self
.
mask_value
(
Mask_fg
[
i
],
hmin
[
i
][
j
],
Mask_fg
[
i
]
=
self
.
mask_value
(
Mask_fg
[
i
],
hmin
[
i
][
j
],
hmax
[
i
][
j
]
+
1
,
wmin
[
i
][
j
],
hmax
[
i
][
j
]
+
1
,
wmin
[
i
][
j
],
wmax
[
i
][
j
]
+
1
,
area
[
0
][
j
])
wmax
[
i
][
j
]
+
1
,
area_recip
[
0
][
j
])
Mask_bg
[
i
]
=
paddle
.
where
(
Mask_fg
[
i
]
>
zero_tmp
,
zero_tmp
,
one_tmp
)
Mask_bg
[
i
]
=
paddle
.
where
(
Mask_fg
[
i
]
>
zero_tmp
,
zero_tmp
,
one_tmp
)
if
paddle
.
sum
(
Mask_bg
[
i
]):
if
paddle
.
sum
(
Mask_bg
[
i
]):
Mask_bg
[
i
]
/=
paddle
.
sum
(
Mask_bg
[
i
])
Mask_bg
[
i
]
/=
paddle
.
sum
(
Mask_bg
[
i
])
fg_loss
,
bg_loss
=
self
.
get_fea_loss
(
preds_S
,
preds_T
,
Mask_fg
,
Mask_bg
,
fg_loss
,
bg_loss
=
self
.
feature_loss
(
stu_feature
,
tea_feature
,
Mask_fg
,
C_attention_s
,
C_attention_t
,
Mask_bg
,
tea_channel_att
,
S_attention_s
,
S_attention_t
)
tea_spatial_att
)
mask_loss
=
self
.
get_mask_loss
(
C_attention_s
,
C_attention_t
,
mask_loss
=
self
.
mask_loss
(
stu_channel_att
,
tea_channel_att
,
S_attention_s
,
S_attention_t
)
stu_spatial_att
,
tea_spatial_att
)
rela_loss
=
self
.
get_rela_loss
(
preds_S
,
preds_T
)
rela_loss
=
self
.
relation_loss
(
stu_feature
,
tea_feature
)
loss
=
self
.
alpha_fgd
*
fg_loss
+
self
.
beta_fgd
*
bg_loss
\
loss
=
self
.
alpha_fgd
*
fg_loss
+
self
.
beta_fgd
*
bg_loss
\
+
self
.
gamma_fgd
*
mask_loss
+
self
.
lambda_fgd
*
rela_loss
+
self
.
gamma_fgd
*
mask_loss
+
self
.
lambda_fgd
*
rela_loss
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录