Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d3e99aee
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d3e99aee
编写于
6月 04, 2018
作者:
Y
Yuan Gao
提交者:
qingqing01
6月 04, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add normalize switch to box_coder_op (#11129)
上级
e0a8c584
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
78 addition
and
44 deletion
+78
-44
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+4
-0
paddle/fluid/operators/detection/box_coder_op.cu
paddle/fluid/operators/detection/box_coder_op.cu
+24
-18
paddle/fluid/operators/detection/box_coder_op.h
paddle/fluid/operators/detection/box_coder_op.h
+26
-18
python/paddle/fluid/tests/unittests/test_box_coder_op.py
python/paddle/fluid/tests/unittests/test_box_coder_op.py
+24
-8
未找到文件。
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
d3e99aee
...
...
@@ -91,6 +91,10 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
"the code type used with the target box"
)
.
SetDefault
(
"encode_center_size"
)
.
InEnum
({
"encode_center_size"
,
"decode_center_size"
});
AddAttr
<
bool
>
(
"box_normalized"
,
"(bool, default true) "
"whether treat the priorbox as a noramlized box"
)
.
SetDefault
(
true
);
AddOutput
(
"OutputBox"
,
"(LoDTensor or Tensor) "
"When code_type is 'encode_center_size', the output tensor of "
...
...
paddle/fluid/operators/detection/box_coder_op.cu
浏览文件 @
d3e99aee
...
...
@@ -20,15 +20,16 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
T
*
output
)
{
const
bool
normalized
,
T
*
output
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
row
*
col
)
{
const
int
row_idx
=
idx
/
col
;
const
int
col_idx
=
idx
%
col
;
T
prior_box_width
=
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
];
T
prior_box_height
=
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
];
T
prior_box_width
=
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
col_idx
*
len
+
2
]
+
prior_box_data
[
col_idx
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
col_idx
*
len
+
3
]
+
...
...
@@ -41,10 +42,11 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
T
target_box_center_y
=
(
target_box_data
[
row_idx
*
len
+
3
]
+
target_box_data
[
row_idx
*
len
+
1
])
/
2
;
T
target_box_width
=
target_box_data
[
row_idx
*
len
+
2
]
-
target_box_data
[
row_idx
*
len
];
T
target_box_height
=
target_box_data
[
row_idx
*
len
+
3
]
-
target_box_data
[
row_idx
*
len
+
1
];
T
target_box_width
=
target_box_data
[
row_idx
*
len
+
2
]
-
target_box_data
[
row_idx
*
len
]
+
(
normalized
==
false
);
T
target_box_height
=
target_box_data
[
row_idx
*
len
+
3
]
-
target_box_data
[
row_idx
*
len
+
1
]
+
(
normalized
==
false
);
output
[
idx
*
len
]
=
(
target_box_center_x
-
prior_box_center_x
)
/
prior_box_width
/
prior_box_var_data
[
col_idx
*
len
];
...
...
@@ -63,14 +65,15 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
T
*
output
)
{
const
bool
normalized
,
T
*
output
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
row
*
col
)
{
const
int
col_idx
=
idx
%
col
;
T
prior_box_width
=
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
];
T
prior_box_height
=
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
];
T
prior_box_width
=
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
col_idx
*
len
+
2
]
+
prior_box_data
[
col_idx
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
col_idx
*
len
+
3
]
+
...
...
@@ -93,8 +96,10 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
output
[
idx
*
len
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
idx
*
len
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
output
[
idx
*
len
+
2
]
=
target_box_center_x
+
target_box_width
/
2
;
output
[
idx
*
len
+
3
]
=
target_box_center_y
+
target_box_height
/
2
;
output
[
idx
*
len
+
2
]
=
target_box_center_x
+
target_box_width
/
2
-
(
normalized
==
false
);
output
[
idx
*
len
+
3
]
=
target_box_center_y
+
target_box_height
/
2
-
(
normalized
==
false
);
}
}
...
...
@@ -128,14 +133,15 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
T
*
output
=
output_box
->
data
<
T
>
();
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
EncodeCenterSizeKernel
<
T
><<<
grid
,
block
,
0
,
device_ctx
.
stream
()
>>>
(
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
len
,
output
);
normalized
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSizeKernel
<
T
><<<
grid
,
block
,
0
,
device_ctx
.
stream
()
>>>
(
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
len
,
output
);
normalized
,
output
);
}
}
};
...
...
paddle/fluid/operators/detection/box_coder_op.h
浏览文件 @
d3e99aee
...
...
@@ -34,7 +34,7 @@ class BoxCoderKernel : public framework::OpKernel<T> {
void
EncodeCenterSize
(
const
framework
::
Tensor
&
target_box
,
const
framework
::
Tensor
&
prior_box
,
const
framework
::
Tensor
&
prior_box_var
,
T
*
output
)
const
{
const
bool
normalized
,
T
*
output
)
const
{
int64_t
row
=
target_box
.
dims
()[
0
];
int64_t
col
=
prior_box
.
dims
()[
0
];
int64_t
len
=
prior_box
.
dims
()[
1
];
...
...
@@ -44,10 +44,11 @@ class BoxCoderKernel : public framework::OpKernel<T> {
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
];
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
];
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
j
*
len
+
2
]
+
prior_box_data
[
j
*
len
])
/
2
;
T
prior_box_center_y
=
...
...
@@ -57,10 +58,11 @@ class BoxCoderKernel : public framework::OpKernel<T> {
(
target_box_data
[
i
*
len
+
2
]
+
target_box_data
[
i
*
len
])
/
2
;
T
target_box_center_y
=
(
target_box_data
[
i
*
len
+
3
]
+
target_box_data
[
i
*
len
+
1
])
/
2
;
T
target_box_width
=
target_box_data
[
i
*
len
+
2
]
-
target_box_data
[
i
*
len
];
T
target_box_height
=
target_box_data
[
i
*
len
+
3
]
-
target_box_data
[
i
*
len
+
1
];
T
target_box_width
=
target_box_data
[
i
*
len
+
2
]
-
target_box_data
[
i
*
len
]
+
(
normalized
==
false
);
T
target_box_height
=
target_box_data
[
i
*
len
+
3
]
-
target_box_data
[
i
*
len
+
1
]
+
(
normalized
==
false
);
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
output
[
offset
]
=
(
target_box_center_x
-
prior_box_center_x
)
/
...
...
@@ -79,7 +81,7 @@ class BoxCoderKernel : public framework::OpKernel<T> {
void
DecodeCenterSize
(
const
framework
::
Tensor
&
target_box
,
const
framework
::
Tensor
&
prior_box
,
const
framework
::
Tensor
&
prior_box_var
,
T
*
output
)
const
{
const
bool
normalized
,
T
*
output
)
const
{
int64_t
row
=
target_box
.
dims
()[
0
];
int64_t
col
=
prior_box
.
dims
()[
0
];
int64_t
len
=
prior_box
.
dims
()[
1
];
...
...
@@ -91,10 +93,11 @@ class BoxCoderKernel : public framework::OpKernel<T> {
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
];
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
];
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
j
*
len
+
2
]
+
prior_box_data
[
j
*
len
])
/
2
;
T
prior_box_center_y
=
...
...
@@ -116,8 +119,10 @@ class BoxCoderKernel : public framework::OpKernel<T> {
output
[
offset
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
offset
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
output
[
offset
+
2
]
=
target_box_center_x
+
target_box_width
/
2
;
output
[
offset
+
3
]
=
target_box_center_y
+
target_box_height
/
2
;
output
[
offset
+
2
]
=
target_box_center_x
+
target_box_width
/
2
-
(
normalized
==
false
);
output
[
offset
+
3
]
=
target_box_center_y
+
target_box_height
/
2
-
(
normalized
==
false
);
}
}
}
...
...
@@ -139,11 +144,14 @@ class BoxCoderKernel : public framework::OpKernel<T> {
output_box
->
mutable_data
<
T
>
({
row
,
col
,
len
},
context
.
GetPlace
());
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
T
*
output
=
output_box
->
data
<
T
>
();
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
EncodeCenterSize
(
*
target_box
,
*
prior_box
,
*
prior_box_var
,
output
);
EncodeCenterSize
(
*
target_box
,
*
prior_box
,
*
prior_box_var
,
normalized
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSize
(
*
target_box
,
*
prior_box
,
*
prior_box_var
,
output
);
DecodeCenterSize
(
*
target_box
,
*
prior_box
,
*
prior_box_var
,
normalized
,
output
);
}
}
};
...
...
python/paddle/fluid/tests/unittests/test_box_coder_op.py
浏览文件 @
d3e99aee
...
...
@@ -19,7 +19,8 @@ import math
from
op_test
import
OpTest
def
box_coder
(
target_box
,
prior_box
,
prior_box_var
,
output_box
,
code_type
):
def
box_coder
(
target_box
,
prior_box
,
prior_box_var
,
output_box
,
code_type
,
box_normalized
):
prior_box_x
=
(
(
prior_box
[:,
2
]
+
prior_box
[:,
0
])
/
2
).
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_y
=
(
...
...
@@ -30,6 +31,9 @@ def box_coder(target_box, prior_box, prior_box_var, output_box, code_type):
(
prior_box
[:,
3
]
-
prior_box
[:,
1
])).
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_var
=
prior_box_var
.
reshape
(
1
,
prior_box_var
.
shape
[
0
],
prior_box_var
.
shape
[
1
])
if
not
box_normalized
:
prior_box_height
=
prior_box_height
+
1
prior_box_width
=
prior_box_width
+
1
if
(
code_type
==
"EncodeCenterSize"
):
target_box_x
=
((
target_box
[:,
2
]
+
target_box
[:,
0
])
/
2
).
reshape
(
...
...
@@ -40,6 +44,9 @@ def box_coder(target_box, prior_box, prior_box_var, output_box, code_type):
target_box
.
shape
[
0
],
1
)
target_box_height
=
((
target_box
[:,
3
]
-
target_box
[:,
1
])).
reshape
(
target_box
.
shape
[
0
],
1
)
if
not
box_normalized
:
target_box_height
=
target_box_height
+
1
target_box_width
=
target_box_width
+
1
output_box
[:,:,
0
]
=
(
target_box_x
-
prior_box_x
)
/
prior_box_width
/
\
prior_box_var
[:,:,
0
]
...
...
@@ -64,9 +71,13 @@ def box_coder(target_box, prior_box, prior_box_var, output_box, code_type):
output_box
[:,
:,
1
]
=
target_box_y
-
target_box_height
/
2
output_box
[:,
:,
2
]
=
target_box_x
+
target_box_width
/
2
output_box
[:,
:,
3
]
=
target_box_y
+
target_box_height
/
2
if
not
box_normalized
:
output_box
[:,
:,
2
]
=
output_box
[:,
:,
2
]
-
1
output_box
[:,
:,
3
]
=
output_box
[:,
:,
3
]
-
1
def
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
,
code_type
):
def
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
,
code_type
,
box_normalized
):
n
=
target_box
.
shape
[
0
]
m
=
prior_box
.
shape
[
0
]
output_box
=
np
.
zeros
((
n
,
m
,
4
),
dtype
=
np
.
float32
)
...
...
@@ -74,11 +85,11 @@ def batch_box_coder(prior_box, prior_box_var, target_box, lod, code_type):
if
(
code_type
==
"EncodeCenterSize"
):
box_coder
(
target_box
[
lod
[
i
]:
lod
[
i
+
1
],
:],
prior_box
,
prior_box_var
,
output_box
[
lod
[
i
]:
lod
[
i
+
1
],
:,
:],
code_type
)
code_type
,
box_normalized
)
elif
(
code_type
==
"DecodeCenterSize"
):
box_coder
(
target_box
[
lod
[
i
]:
lod
[
i
+
1
],
:,
:],
prior_box
,
prior_box_var
,
output_box
[
lod
[
i
]:
lod
[
i
+
1
],
:,
:],
code_type
)
code_type
,
box_normalized
)
return
output_box
...
...
@@ -93,15 +104,19 @@ class TestBoxCoderOp(OpTest):
prior_box_var
=
np
.
random
.
random
((
10
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
5
,
10
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
[
0
],
code_type
)
lod
[
0
],
code_type
,
box_normalized
)
self
.
inputs
=
{
'PriorBox'
:
prior_box
,
'PriorBoxVar'
:
prior_box_var
,
'TargetBox'
:
target_box
,
}
self
.
attrs
=
{
'code_type'
:
'decode_center_size'
}
self
.
attrs
=
{
'code_type'
:
'decode_center_size'
,
'box_normalized'
:
False
}
self
.
outputs
=
{
'OutputBox'
:
output_box
}
...
...
@@ -116,15 +131,16 @@ class TestBoxCoderOpWithLoD(OpTest):
prior_box_var
=
np
.
random
.
random
((
10
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
20
,
4
)).
astype
(
'float32'
)
code_type
=
"EncodeCenterSize"
box_normalized
=
True
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
[
0
],
code_type
)
lod
[
0
],
code_type
,
box_normalized
)
self
.
inputs
=
{
'PriorBox'
:
prior_box
,
'PriorBoxVar'
:
prior_box_var
,
'TargetBox'
:
(
target_box
,
lod
),
}
self
.
attrs
=
{
'code_type'
:
'encode_center_size'
}
self
.
attrs
=
{
'code_type'
:
'encode_center_size'
,
'box_normalized'
:
True
}
self
.
outputs
=
{
'OutputBox'
:
output_box
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录