Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d2e1b46f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d2e1b46f
编写于
9月 20, 2016
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update beam_search and seqToseq config, and add ExpActivation api
上级
425e5b0b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
68 addition
and
99 deletion
+68
-99
demo/seqToseq/seqToseq_net.py
demo/seqToseq/seqToseq_net.py
+9
-13
doc/ui/api/trainer_config_helpers/activations.rst
doc/ui/api/trainer_config_helpers/activations.rst
+7
-0
paddle/trainer/tests/sample_trainer_rnn_gen.conf
paddle/trainer/tests/sample_trainer_rnn_gen.conf
+42
-85
python/paddle/trainer_config_helpers/activations.py
python/paddle/trainer_config_helpers/activations.py
+10
-1
未找到文件。
demo/seqToseq/seqToseq_net.py
浏览文件 @
d2e1b46f
...
@@ -128,12 +128,16 @@ def gru_encoder_decoder(data_conf,
...
@@ -128,12 +128,16 @@ def gru_encoder_decoder(data_conf,
return
out
return
out
decoder_group_name
=
"decoder_group"
decoder_group_name
=
"decoder_group"
group_inputs
=
[
StaticInput
(
input
=
encoded_vector
,
is_seq
=
True
),
StaticInput
(
input
=
encoded_proj
,
is_seq
=
True
)]
if
not
is_generating
:
if
not
is_generating
:
trg_embedding
=
embedding_layer
(
trg_embedding
=
embedding_layer
(
input
=
data_layer
(
name
=
'target_language_word'
,
input
=
data_layer
(
name
=
'target_language_word'
,
size
=
target_dict_dim
),
size
=
target_dict_dim
),
size
=
word_vector_dim
,
size
=
word_vector_dim
,
param_attr
=
ParamAttr
(
name
=
'_target_language_embedding'
))
param_attr
=
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# target embeding (the groudtruth) is the data input,
...
@@ -142,22 +146,13 @@ def gru_encoder_decoder(data_conf,
...
@@ -142,22 +146,13 @@ def gru_encoder_decoder(data_conf,
# for the recurrent_group.
# for the recurrent_group.
decoder
=
recurrent_group
(
name
=
decoder_group_name
,
decoder
=
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
step
=
gru_decoder_with_attention
,
input
=
[
input
=
group_inputs
)
StaticInput
(
input
=
encoded_vector
,
is_seq
=
True
),
StaticInput
(
input
=
encoded_proj
,
is_seq
=
True
),
trg_embedding
])
lbl
=
data_layer
(
name
=
'target_language_next_word'
,
lbl
=
data_layer
(
name
=
'target_language_next_word'
,
size
=
target_dict_dim
)
size
=
target_dict_dim
)
cost
=
classification_cost
(
input
=
decoder
,
label
=
lbl
,
)
cost
=
classification_cost
(
input
=
decoder
,
label
=
lbl
)
outputs
(
cost
)
outputs
(
cost
)
else
:
else
:
gen_inputs
=
[
StaticInput
(
input
=
encoded_vector
,
is_seq
=
True
),
StaticInput
(
input
=
encoded_proj
,
is_seq
=
True
),
]
# In generation, the decoder predicts a next target word based on
# In generation, the decoder predicts a next target word based on
# the encoded source sequence and the last generated target word.
# the encoded source sequence and the last generated target word.
...
@@ -171,10 +166,11 @@ def gru_encoder_decoder(data_conf,
...
@@ -171,10 +166,11 @@ def gru_encoder_decoder(data_conf,
size
=
target_dict_dim
,
size
=
target_dict_dim
,
embedding_name
=
'_target_language_embedding'
,
embedding_name
=
'_target_language_embedding'
,
embedding_size
=
word_vector_dim
)
embedding_size
=
word_vector_dim
)
gen_inputs
.
append
(
trg_embedding
)
group_inputs
.
append
(
trg_embedding
)
beam_gen
=
beam_search
(
name
=
decoder_group_name
,
beam_gen
=
beam_search
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
step
=
gru_decoder_with_attention
,
input
=
g
en
_inputs
,
input
=
g
roup
_inputs
,
id_input
=
data_layer
(
name
=
"sent_id"
,
id_input
=
data_layer
(
name
=
"sent_id"
,
size
=
1
),
size
=
1
),
dict_file
=
trg_dict_path
,
dict_file
=
trg_dict_path
,
...
...
doc/ui/api/trainer_config_helpers/activations.rst
浏览文件 @
d2e1b46f
...
@@ -12,6 +12,13 @@ AbsActivation
...
@@ -12,6 +12,13 @@ AbsActivation
:members: AbsActivation
:members: AbsActivation
:noindex:
:noindex:
ExpActivation
===============
.. automodule:: paddle.trainer_config_helpers.activations
:members: ExpActivation
:noindex:
IdentityActivation
IdentityActivation
==================
==================
...
...
paddle/trainer/tests/sample_trainer_rnn_gen.conf
浏览文件 @
d2e1b46f
...
@@ -13,96 +13,53 @@
...
@@ -13,96 +13,53 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
import
math
from
paddle
.
trainer_config_helpers
import
*
beam_search
=
get_config_arg
(
'beam_search'
,
bool
,
False
)
settings
(
batch_size
=
15
,
learning_rate
=
0
)
model_type
(
"recurrent_nn"
)
Settings
(
learning_rate
=
0
,
batch_size
=
15
,
algorithm
=
'sgd'
)
Inputs
(
"sent_id"
,
"dummy_data_input"
)
Outputs
(
"predict_word"
)
num_words
=
5
num_words
=
5
beam_flag
=
get_config_arg
(
'beam_search'
,
bool
,
False
)
DataLayer
(
name
=
"sent_id"
,
size
=
1
,
)
sent_id
=
data_layer
(
name
=
"sent_id"
,
size
=
1
)
# This layer has no actual use, but only to decide batch_size in generation.
# This layer has no actual use, but only to decide batch_size in generation.
# When generating, at least one Memory in RecurrentLayer MUST have a boot layer.
# When generating, at least one Memory in RecurrentLayer MUST have a boot layer.
DataLayer
(
name
=
"dummy_data_input"
,
size
=
2
, )
dummy_data
=
data_layer
(
name
=
"dummy_data_input"
,
size
=
2
)
if
beam_search
:
gen_inputs
= [
StaticInput
(
input
=
dummy_data
,
size
=
2
),
RecurrentLayerGroupBegin
(
"decoding_layer_group"
,
GeneratedInput
(
size
=
num_words
,
in_links
=[],
embedding_name
=
"wordvec"
,
out_links
=[
"predict_word"
],
embedding_size
=
num_words
)]
generator
=
Generator
(
max_num_frames
=
10
,
beam_size
=
2
,
def
step
(
dummy_memory
,
predict_word
):
num_results_per_sample
=
2
, ))
else
:
# simplified RNN for testing
RecurrentLayerGroupBegin
(
"decoding_layer_group"
,
with
mixed_layer
(
size
=
num_words
)
as
layer
:
in_links
=[],
layer
+=
full_matrix_projection
(
input
=
predict_word
,
out_links
=[
"predict_word"
],
param_attr
=
ParamAttr
(
name
=
"transtable"
))
generator
=
Generator
(
max_num_frames
=
10
, ))
dummy_memory
=
Memory
(
name
=
"dummy_memory"
,
with
mixed_layer
(
size
=
num_words
,
act
=
ExpActivation
())
as
out
:
size
=
2
,
out
+=
trans_full_matrix_projection
(
input
=
layer
,
boot_layer
=
"dummy_data_input"
)
param_attr
=
ParamAttr
(
name
=
"wordvec"
))
MixedLayer
(
name
=
"dummy_memory"
,
size
=
2
,
return
out
bias
=
False
,
inputs
=[
IdentityProjection
(
dummy_memory
)], )
beam_gen
=
beam_search
(
name
=
"rnn_gen"
,
state_memory
=
Memory
(
name
=
"state"
,
step
=
step
,
size
=
num_words
,
input
=
gen_inputs
,
#boot_bias=True,
id_input
=
sent_id
,
#boot_bias_active_type = "tanh",
dict_file
=
"./trainer/tests/test_gen_dict.txt"
,
)
result_file
=
"./trainer/tests/dump_text.test"
,
bos_id
=
0
,
predict_word_memory
=
Memory
(
name
=
"predict_word"
,
eos_id
=
num_words
-
1
,
size
=
num_words
,
beam_size
=
2
if
beam_flag
else
1
,
boot_with_const_id
=
0
, )
num_results_per_sample
=
2
if
beam_flag
else
1
,
max_length
=
10
)
MixedLayer
(
name
=
"word_embedding"
,
#outputs(beam_gen)
size
=
num_words
,
# word embedding dim is the same as num_words in this test.
# In this config, as dummy_data_input doesn't work on beam_gen (we can find dummy_memory
bias
=
False
,
# is read-only memory, and isn't used by other layers of step), we show the Inputs and Outputs
inputs
=
TableProjection
(
predict_word_memory
,
# as follows. Note that "__beam_search_predict__" is the default output name of beam_search.
initial_std
=
1
,
Inputs
(
"sent_id"
,
"dummy_data_input"
)
learning_rate
=
0
,
Outputs
(
"__beam_search_predict__"
)
parameter_name
=
"wordvec"
))
Layer
(
# simplified RNN for testing
name
=
"state"
,
type
=
"mixed"
,
size
=
num_words
,
bias
=
False
,
inputs
=[
FullMatrixProjection
(
"word_embedding"
,
parameter_name
=
"transtable"
)])
Layer
(
name
=
"output"
,
type
=
"mixed"
,
size
=
num_words
,
active_type
=
"exponential"
,
bias
=
False
,
inputs
=
TransposedFullMatrixProjection
(
"state"
,
initial_std
=
1
,
learning_rate
=
0
,
parameter_name
=
"wordvec"
), )
Layer
(
name
=
"predict_word"
,
type
=
"maxid"
,
inputs
=[
"output"
], )
Layer
(
name
=
"eos_check"
,
type
=
"eos_id"
,
eos_id
=
num_words
-
1
,
inputs
=[
"predict_word"
], )
RecurrentLayerGroupEnd
(
"decoding_layer_group"
)
Evaluator
(
name
=
"answer_printer"
,
type
=
"seq_text_printer"
,
dict_file
=
"./trainer/tests/test_gen_dict.txt"
,
result_file
=
"./trainer/tests/dump_text.test"
,
inputs
=[
"sent_id"
,
"predict_word"
,
], )
python/paddle/trainer_config_helpers/activations.py
浏览文件 @
d2e1b46f
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
__all__
=
[
"TanhActivation"
,
"SigmoidActivation"
,
__all__
=
[
"TanhActivation"
,
"SigmoidActivation"
,
"SoftmaxActivation"
,
"IdentityActivation"
,
"LinearActivation"
,
"SoftmaxActivation"
,
"IdentityActivation"
,
"LinearActivation"
,
'SequenceSoftmaxActivation'
,
'SequenceSoftmaxActivation'
,
'ExpActivation'
,
"ReluActivation"
,
"BReluActivation"
,
"SoftReluActivation"
,
"STanhActivation"
,
"ReluActivation"
,
"BReluActivation"
,
"SoftReluActivation"
,
"STanhActivation"
,
"AbsActivation"
,
"SquareActivation"
,
"BaseActivation"
]
"AbsActivation"
,
"SquareActivation"
,
"BaseActivation"
]
...
@@ -185,3 +185,12 @@ class SquareActivation(BaseActivation):
...
@@ -185,3 +185,12 @@ class SquareActivation(BaseActivation):
"""
"""
def
__init__
(
self
):
BaseActivation
.
__init__
(
self
,
'square'
,
False
)
def
__init__
(
self
):
BaseActivation
.
__init__
(
self
,
'square'
,
False
)
class
ExpActivation
(
BaseActivation
):
"""
Exponential Activation.
.. math::
f(z) = e^z.
"""
def
__init__
(
self
):
BaseActivation
.
__init__
(
self
,
'exponential'
,
False
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录