未验证 提交 d214d9ec 编写于 作者: G George Ni 提交者: GitHub

[MOT] add jde fairmot deploy doc (#3421)

上级 ff423498
...@@ -246,6 +246,21 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_ ...@@ -246,6 +246,21 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_
Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`. Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`.
### 4. Export model
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams
```
### 5. Using exported model for python inference
```bash
python deploy/python/mot_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --use_gpu=True --save_results
```
**Notes:**
The tracking model is used to predict the video, and does not support the prediction of a single image. The visualization video of the tracking results is saved by default. You can add `--save_results` to save the txt result file, or `--save_images` to save the visualization images.
## Citations ## Citations
``` ```
@inproceedings{Wojke2017simple, @inproceedings{Wojke2017simple,
......
...@@ -244,6 +244,20 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_ ...@@ -244,6 +244,20 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_
**注意:** **注意:**
请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg` 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`
### 4. 导出预测模型
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams
```
### 5. 用导出的模型基于Python去预测
```bash
python deploy/python/mot_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --use_gpu=True --save_results
```
**注意:**
跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_results`表示保存跟踪结果的txt文件,或`--save_images`表示保存跟踪结果可视化图片。
## 引用 ## 引用
``` ```
@inproceedings{Wojke2017simple, @inproceedings{Wojke2017simple,
......
...@@ -77,6 +77,21 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_ ...@@ -77,6 +77,21 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_
Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`. Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`.
### 4. Export model
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams
```
### 5. Using exported model for python inference
```bash
python deploy/python/mot_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --use_gpu=True --save_results
```
**Notes:**
The tracking model is used to predict the video, and does not support the prediction of a single image. The visualization video of the tracking results is saved by default. You can add `--save_results` to save the txt result file, or `--save_images` to save the visualization images.
## Citations ## Citations
``` ```
@article{zhang2020fair, @article{zhang2020fair,
......
...@@ -75,6 +75,20 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_ ...@@ -75,6 +75,20 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_
**注意:** **注意:**
请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg` 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`
### 4. 导出预测模型
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams
```
### 5. 用导出的模型基于Python去预测
```bash
python deploy/python/mot_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --use_gpu=True --save_results
```
**注意:**
跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_results`表示保存跟踪结果的txt文件,或`--save_images`表示保存跟踪结果可视化图片。
## 引用 ## 引用
``` ```
@article{zhang2020fair, @article{zhang2020fair,
......
...@@ -83,6 +83,21 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/jde/jde_darknet5 ...@@ -83,6 +83,21 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/jde/jde_darknet5
Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`. Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`.
### 4. Export model
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
```
### 5. Using exported model for python inference
```bash
python deploy/python/mot_infer.py --model_dir=output_inference/jde_darknet53_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --use_gpu=True --save_results
```
**Notes:**
The tracking model is used to predict the video, and does not support the prediction of a single image. The visualization video of the tracking results is saved by default. You can add `--save_results` to save the txt result file, or `--save_images` to save the visualization images.
## Citations ## Citations
``` ```
@article{wang2019towards, @article{wang2019towards,
......
...@@ -84,6 +84,20 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/jde/jde_darknet5 ...@@ -84,6 +84,20 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/jde/jde_darknet5
**注意:** **注意:**
请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg` 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`
### 4. 导出预测模型
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
```
### 5. 用导出的模型基于Python去预测
```bash
python deploy/python/mot_infer.py --model_dir=output_inference/jde_darknet53_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --use_gpu=True --save_results
```
**注意:**
跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_results`表示保存跟踪结果的txt文件,或`--save_images`表示保存跟踪结果可视化图片。。
## 引用 ## 引用
``` ```
@article{wang2019towards, @article{wang2019towards,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册