提交 d17bb4e6 编写于 作者: M minqiyang

Add unit test for gru unit

test=develop
上级 0d27d204
......@@ -22,6 +22,7 @@ from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant
__all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit']
......@@ -548,7 +549,7 @@ class GRUUnit(layers.Layer):
"""
def __init__(self,
hidden,
name_scope,
size,
param_attr=None,
bias_attr=None,
......@@ -556,8 +557,8 @@ class GRUUnit(layers.Layer):
gate_activation='sigmoid',
origin_mode=False,
dtype='float32'):
super(GRUUnit, self).__init__(name_scope)
super(GRUUnit, self).__init__()
activation_dict = dict(
identity=0,
sigmoid=1,
......@@ -566,29 +567,27 @@ class GRUUnit(layers.Layer):
activation = activation_dict[activation]
gate_activation = activation_dict[gate_activation]
helper = LayerHelper('gru_unit', **locals())
dtype = helper.input_dtype()
self._dtype = dtype
size = size // 3
# create weight
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
self._weight = self.create_parameter(
attr=param_attr, shape=[size, 3 * size], dtype=dtype)
gate = helper.create_variable_for_type_inference(dtype)
reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
updated_hidden = helper.create_variable_for_type_inference(dtype)
inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
# create bias
if helper.bias_attr:
bias_size = [1, 3 * size]
bias = helper.create_parameter(
attr=helper.bias_attr,
shape=bias_size,
dtype=dtype,
is_bias=True)
inputs['Bias'] = bias
bias_size = [1, 3 * size]
self._bias = self.create_parameter(
attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
def forward(self, input):
def forward(self, input, hidden):
inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self._weight}
if self._bias:
inputs['Bias'] = self._bias
gate = self._helper.create_variable_for_type_inference(self._dtype)
reset_hidden_pre = self._helper.create_variable_for_type_inference(
self._dtype)
updated_hidden = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type='gru_unit',
inputs=inputs,
......
......@@ -22,6 +22,7 @@ import six
import time
import itertools
import collections
from collections import defaultdict
import paddle.fluid as fluid
import paddle.fluid.core as core
......@@ -257,8 +258,65 @@ class OpTest(unittest.TestCase):
outs, _ = self._calc_output(place)
return outs
def _calc_output(self, place, parallel=False, no_check_set=None):
def _create_var_from_numpy(self, value):
if isinstance(value, tuple):
data = value[0]
lod = value[1]
v = fluid.imperative.base.to_variable(value=data)
v._ivar.value().get_tensor().set_recursive_sequence_lengths(lod)
return v
else:
return fluid.imperative.base.to_variable(value)
def _calc_imperative_output(self, place, parallel=False, no_check_set=None):
with fluid.imperative.base.guard(place=place):
block = fluid.default_main_program().global_block()
# prepare input variable
inputs = defaultdict(list)
for name, np_value in six.iteritems(self.inputs):
if not isinstance(np_value, list):
np_value = [np_value]
for i in range(len(np_value)):
inputs[name].append(
self._create_var_from_numpy(np_value[i]))
# prepare output variable
outputs = defaultdict(list)
for name, np_value in six.iteritems(self.outputs):
if not isinstance(np_value, list):
np_value = [np_value]
for i in range(len(np_value)):
value = np_value[i]
if isinstance(value, tuple):
v = block.create_var(
name="%s_out%d" % (name, i),
dtype=value[0].dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False)
v._ivar.value().get_tensor(
).set_recursive_sequence_lengths(value[1])
else:
v = block.create_var(
name="%s_out%d" % (name, i),
dtype=value.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False)
outputs[name].append(v)
block.append_op(
type=self.op_type,
inputs=inputs,
outputs=outputs,
attrs=self.attrs)
return outputs
def _calc_output(self, place, parallel=False, no_check_set=None):
program = Program()
block = program.global_block()
self._append_ops(block)
......@@ -305,8 +363,13 @@ class OpTest(unittest.TestCase):
place,
atol,
no_check_set=None,
equal_nan=False):
equal_nan=False,
check_imperative=False):
if check_imperative:
imperative_outs = self._calc_imperative_output(
place, no_check_set=no_check_set)
outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
for out_name, out_dup in Operator.get_op_outputs(self.op_type):
if out_name not in self.outputs:
continue
......@@ -330,6 +393,10 @@ class OpTest(unittest.TestCase):
type(sub_out))
for item in sub_out:
sub_out_name, expect = item[0], item[1]
if check_imperative:
imperative_actual = imperative_outs[sub_out_name][0]
imperative_actual_t = np.array(
imperative_actual._ivar.value().get_tensor())
idx = find_actual(sub_out_name, fetch_list)
actual = outs[idx]
actual_t = np.array(actual)
......@@ -340,12 +407,24 @@ class OpTest(unittest.TestCase):
actual_t, expect_t, atol=atol, equal_nan=equal_nan),
"Output (" + sub_out_name + ") has diff at " +
str(place))
self.assertTrue(
np.allclose(
imperative_actual_t,
expect_t,
atol=atol,
equal_nan=equal_nan),
"Output (" + sub_out_name + ") has diff at " +
str(place) + " in imperative mode")
if isinstance(expect, tuple):
self.assertListEqual(
actual.recursive_sequence_lengths(), expect[1],
"Output (" + sub_out_name +
") has different lod at " + str(place))
else:
if check_imperative:
imperative_actual = imperative_outs[out_name][0]
imperative_actual_t = np.array(
imperative_actual._ivar.value().get_tensor())
idx = find_actual(out_name, fetch_list)
actual = outs[idx]
actual_t = np.array(actual)
......@@ -357,10 +436,25 @@ class OpTest(unittest.TestCase):
"Output (" + out_name + ") has diff at " + str(place) +
"\nExpect " + str(expect_t) + "\n" + "But Got" +
str(actual_t) + " in class " + self.__class__.__name__)
self.assertTrue(
np.allclose(
imperative_actual_t,
expect_t,
atol=atol,
equal_nan=equal_nan),
"Output (" + out_name + ") has diff at " + str(place) +
"\nExpect " + str(expect_t) + "\n" + "But Got" +
str(imperative_actual_t) + " in class " +
self.__class__.__name__)
if isinstance(expect, tuple):
self.assertListEqual(actual.recursive_sequence_lengths(),
expect[1], "Output (" + out_name +
") has different lod at " + str(place))
if check_imperative:
self.assertListEqual(
imperative_actual._ivar.value().get_tensor()
.recursive_sequence_lengths(), expect[1], "Output ("
+ out_name + ") has different lod at " + str(place))
def _get_places(self):
if self.dtype == np.float16:
......@@ -383,10 +477,15 @@ class OpTest(unittest.TestCase):
places.append(core.CUDAPlace(0))
return places
def check_output(self, atol=1e-5, no_check_set=None, equal_nan=False):
def check_output(self,
atol=1e-5,
no_check_set=None,
equal_nan=False,
check_imperative=False):
places = self._get_places()
for place in places:
self.check_output_with_place(place, atol, no_check_set, equal_nan)
self.check_output_with_place(place, atol, no_check_set, equal_nan,
check_imperative)
def check_output_customized(self, checker):
places = self._get_places()
......
......@@ -156,7 +156,7 @@ class TestGRUOp(OpTest):
}
def test_check_output(self):
self.check_output(atol=1e-8)
self.check_output(atol=1e-8, check_imperative=True)
def test_check_grad(self):
self.check_grad(['Input', 'H0', 'Weight', 'Bias'], ['Hidden'])
......
......@@ -112,6 +112,47 @@ class TestLayer(LayerTest):
self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
self.assertTrue(np.allclose(static_ret, static_ret2))
def test_gru_unit(self):
lod = [[2, 4, 3]]
D = 5
T = sum(lod[0])
N = len(lod[0])
input = np.random.rand(T, 3 * D).astype('float32')
hidden_input = np.random.rand(T, D).astype('float32')
with self.static_graph():
x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
input=x, hidden=hidden, size=D * 3)
static_ret = self.get_static_graph_result(
feed={'x': input,
'hidden': hidden_input},
fetch_list=[updated_hidden, reset_hidden_pre, gate])
with self.static_graph():
x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
input=x, hidden=hidden, size=D * 3)
gru = nn.GRUUnit('gru', size=D * 3)
updated_hidden, reset_hidden_pre, gate = gru(x, hidden)
static_ret2 = self.get_static_graph_result(
feed={'x': input,
'hidden': hidden_input},
fetch_list=[updated_hidden, reset_hidden_pre, gate])
with self.dynamic_graph():
gru = nn.GRUUnit('gru', size=D * 3)
dy_ret = gru(
base.to_variable(input), base.to_variable(hidden_input))
for i in range(len(static_ret)):
self.assertTrue(np.allclose(static_ret[i], static_ret2[i]))
self.assertTrue(np.allclose(static_ret[i], dy_ret[i]._numpy()))
class TestBook(unittest.TestCase):
def test_fit_a_line(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册