Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d11e2b40
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d11e2b40
编写于
12月 15, 2016
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove some useless code
上级
558e8692
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
0 addition
and
497 deletion
+0
-497
paddle/cuda/include/hl_cnn.h
paddle/cuda/include/hl_cnn.h
+0
-56
paddle/cuda/include/stub/hl_cnn_stub.h
paddle/cuda/include/stub/hl_cnn_stub.h
+0
-24
paddle/cuda/src/hl_cuda_cnn.cu
paddle/cuda/src/hl_cuda_cnn.cu
+0
-120
paddle/gserver/layers/NormProjectionLayer.cpp
paddle/gserver/layers/NormProjectionLayer.cpp
+0
-29
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+0
-176
paddle/math/Matrix.h
paddle/math/Matrix.h
+0
-65
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+0
-27
未找到文件。
paddle/cuda/include/hl_cnn.h
浏览文件 @
d11e2b40
...
...
@@ -240,62 +240,6 @@ extern void hl_avgpool_backward(const int frameCnt,
real
*
backGrad
,
const
int
outStride
);
/**
* @brief Cross-map-respose normalize forward.
*
* @param[in] frameCnt batch size of input image.
* @param[in] in input data.
* @param[in] scale buffer.
* @param[out] out output data.
* @param[in] channels number of channel.
* @param[in] height image height.
* @param[in] width image width.
* @param[in] sizeX size.
* @param[in] alpha scale.
* @param[in] beta scale.
*
*/
extern
void
hl_CMRNorm_forward
(
size_t
frameCnt
,
const
real
*
in
,
real
*
scale
,
real
*
out
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
);
/**
* @brief Cross-map-respose normalize backward.
*
* @param[in] frameCnt batch size of input image.
* @param[in] inV input data.
* @param[in] scale buffer.
* @param[out] outV output value.
* @param[out] outDiff output grad.
* @param[out] inDiff input grad.
* @param[in] channels number of channel.
* @param[in] height image height.
* @param[in] width image width.
* @param[in] sizeX size.
* @param[in] alpha scale.
* @param[in] beta scale.
*
*/
extern
void
hl_CMRNorm_backward
(
size_t
frameCnt
,
const
real
*
inV
,
const
real
*
scale
,
const
real
*
outV
,
const
real
*
outDiff
,
real
*
inDiff
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
);
/**
* @brief Bilinear interpolation forward.
*
...
...
paddle/cuda/include/stub/hl_cnn_stub.h
浏览文件 @
d11e2b40
...
...
@@ -117,30 +117,6 @@ inline void hl_avgpool_backward(const int frameCnt,
real
*
backGrad
,
const
int
outStride
)
{}
inline
void
hl_CMRNorm_forward
(
size_t
frameCnt
,
const
real
*
in
,
real
*
scale
,
real
*
out
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
)
{}
inline
void
hl_CMRNorm_backward
(
size_t
frameCnt
,
const
real
*
inV
,
const
real
*
scale
,
const
real
*
outV
,
const
real
*
outDiff
,
real
*
inDiff
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
)
{}
inline
void
hl_bilinear_forward
(
const
real
*
inData
,
const
size_t
inImgH
,
const
size_t
inImgW
,
...
...
paddle/cuda/src/hl_cuda_cnn.cu
浏览文件 @
d11e2b40
...
...
@@ -381,126 +381,6 @@ void hl_avgpool_backward(const int frameCnt, const real* outGrad,
CHECK_SYNC
(
"hl_avgpool_backward failed"
);
}
__global__
void
KeCMRNormFillScale
(
size_t
imageSize
,
const
real
*
in
,
real
*
scale
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
size
,
real
alpha
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
imageSize
)
{
const
int
w
=
idx
%
width
;
const
int
h
=
(
idx
/
width
)
%
height
;
const
int
n
=
idx
/
width
/
height
;
const
int
offset
=
(
n
*
channels
*
height
+
h
)
*
width
+
w
;
in
+=
offset
;
scale
+=
offset
;
const
int
step
=
height
*
width
;
const
int
pre_pad
=
(
size
-
1
)
/
2
;
const
int
post_pad
=
size
-
pre_pad
-
1
;
real
accum
=
0
;
int
index
=
0
;
while
(
index
<
channels
+
post_pad
)
{
if
(
index
<
channels
)
{
accum
+=
in
[
index
*
step
]
*
in
[
index
*
step
];
}
if
(
index
>=
size
)
{
accum
-=
in
[(
index
-
size
)
*
step
]
*
in
[(
index
-
size
)
*
step
];
}
if
(
index
>=
post_pad
)
{
scale
[(
index
-
post_pad
)
*
step
]
=
1.
+
accum
*
alpha
;
}
++
index
;
}
}
}
__global__
void
KeCMRNormOutput
(
size_t
inputSize
,
const
real
*
in
,
const
real
*
scale
,
real
negative_beta
,
real
*
out
)
{
const
int
index
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
index
<
inputSize
)
{
out
[
index
]
=
in
[
index
]
*
pow
(
scale
[
index
],
negative_beta
);
}
}
void
hl_CMRNorm_forward
(
size_t
frameCnt
,
const
real
*
in
,
real
*
scale
,
real
*
out
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
)
{
size_t
imageSize
=
frameCnt
*
height
*
width
;
int
blockSize
=
1024
;
int
gridSize
=
(
imageSize
+
1024
-
1
)
/
1024
;
KeCMRNormFillScale
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
imageSize
,
in
,
scale
,
channels
,
height
,
width
,
sizeX
,
alpha
);
size_t
inputSize
=
frameCnt
*
height
*
width
*
channels
;
blockSize
=
1024
;
gridSize
=
(
inputSize
+
1024
-
1
)
/
1024
;
KeCMRNormOutput
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
inputSize
,
in
,
scale
,
beta
,
out
);
CHECK_SYNC
(
"hl_CMRNorm_forward"
);
}
__global__
void
KeCMRNormDiff
(
size_t
imageSize
,
const
real
*
bottom_data
,
const
real
*
top_data
,
const
real
*
scale
,
const
real
*
top_diff
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
size
,
real
negative_beta
,
real
cache_ratio
,
real
*
bottom_diff
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
imageSize
)
{
const
int
w
=
idx
%
width
;
const
int
h
=
(
idx
/
width
)
%
height
;
const
int
n
=
idx
/
width
/
height
;
const
int
offset
=
(
n
*
channels
*
height
+
h
)
*
width
+
w
;
bottom_data
+=
offset
;
top_data
+=
offset
;
scale
+=
offset
;
top_diff
+=
offset
;
bottom_diff
+=
offset
;
const
int
step
=
height
*
width
;
const
int
pre_pad
=
size
-
(
size
+
1
)
/
2
;
const
int
post_pad
=
size
-
pre_pad
-
1
;
int
index
=
0
;
real
accum
=
0
;
while
(
index
<
channels
+
post_pad
)
{
if
(
index
<
channels
)
{
accum
+=
top_diff
[
index
*
step
]
*
top_data
[
index
*
step
]
/
scale
[
index
*
step
];
}
if
(
index
>=
size
)
{
accum
-=
top_diff
[(
index
-
size
)
*
step
]
*
top_data
[(
index
-
size
)
*
step
]
/
scale
[(
index
-
size
)
*
step
];
}
if
(
index
>=
post_pad
)
{
bottom_diff
[(
index
-
post_pad
)
*
step
]
+=
top_diff
[(
index
-
post_pad
)
*
step
]
*
pow
(
scale
[(
index
-
post_pad
)
*
step
],
negative_beta
)
-
cache_ratio
*
bottom_data
[(
index
-
post_pad
)
*
step
]
*
accum
;
}
++
index
;
}
}
}
void
hl_CMRNorm_backward
(
size_t
frameCnt
,
const
real
*
inV
,
const
real
*
scale
,
const
real
*
outV
,
const
real
*
outDiff
,
real
*
inDiff
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
)
{
size_t
imageSize
=
frameCnt
*
height
*
width
;
int
blockSize
=
1024
;
int
gridSize
=
(
imageSize
+
1024
-
1
)
/
1024
;
KeCMRNormDiff
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
imageSize
,
inV
,
outV
,
scale
,
outDiff
,
channels
,
height
,
width
,
sizeX
,
alpha
,
beta
,
inDiff
);
CHECK_SYNC
(
"hl_CMRNorm_backward"
);
}
__global__
void
KeBilinearInterpFw
(
const
real
*
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
...
...
paddle/gserver/layers/NormProjectionLayer.cpp
浏览文件 @
d11e2b40
...
...
@@ -110,34 +110,5 @@ void CMRProjectionNormLayer::backward(const UpdateCallback& callback) {
Tensor
(
denoms_
->
getData
(),
dims_
)},
{
Tensor
(
preOutGrad
->
getData
(),
dims_
)},
{});
#if 0
if (useGpu_) {
CrossMapNormalGrad<DEVICE_TYPE_GPU> crossGrad;
crossGrad(dynamic_cast<GpuMatrix&>(*preOutGrad),
dynamic_cast<GpuMatrix&>(*preOutV),
dynamic_cast<GpuMatrix&>(*localGrad),
dynamic_cast<GpuMatrix&>(*localOutV),
dynamic_cast<GpuMatrix&>(*denoms_),
channels_,
imgSizeH_,
imgSizeW_,
size_,
scale_,
pow_);
} else {
CrossMapNormalGrad<DEVICE_TYPE_CPU> crossGrad;
crossGrad(dynamic_cast<CpuMatrix&>(*preOutGrad),
dynamic_cast<CpuMatrix&>(*preOutV),
dynamic_cast<CpuMatrix&>(*localGrad),
dynamic_cast<CpuMatrix&>(*localOutV),
dynamic_cast<CpuMatrix&>(*denoms_),
channels_,
imgSizeH_,
imgSizeW_,
size_,
scale_,
pow_);
}
#endif
}
}
// namespace paddle
paddle/math/Matrix.cpp
浏览文件 @
d11e2b40
...
...
@@ -1265,69 +1265,6 @@ void GpuMatrix::avgPoolBackward(Matrix& outGrad,
outGrad
.
getStride
());
}
void
GpuMatrix
::
crossMapNormalFwd
(
Matrix
&
input
,
size_t
imgSizeH
,
size_t
imgSizeW
,
Matrix
&
denoms
,
size_t
channels
,
size_t
sizeX
,
float
scale
,
float
pow
)
{
size_t
num
=
input
.
getHeight
();
size_t
height
=
imgSizeH
;
size_t
width
=
imgSizeW
;
CHECK
(
height
*
width
*
channels
==
input
.
getWidth
());
CHECK
(
denoms
.
getHeight
()
==
input
.
getHeight
()
&&
denoms
.
getWidth
()
==
input
.
getWidth
()
&&
input
.
getHeight
()
==
height_
&&
input
.
getWidth
()
==
width_
);
hl_CMRNorm_forward
(
num
,
input
.
getData
(),
denoms
.
getData
(),
data_
,
channels
,
height
,
width
,
sizeX
,
scale
,
-
pow
);
}
void
GpuMatrix
::
crossMapNormalBwd
(
Matrix
&
localGrad
,
Matrix
&
denoms
,
Matrix
&
preOutV
,
Matrix
&
localOutV
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
float
scale
,
float
pow
)
{
size_t
num
=
preOutV
.
getHeight
();
size_t
height
=
imgSizeH
;
size_t
width
=
imgSizeW
;
CHECK
(
width
*
height
*
channels
==
preOutV
.
getWidth
());
CHECK
(
denoms
.
getHeight
()
==
preOutV
.
getHeight
()
&&
denoms
.
getWidth
()
==
preOutV
.
getWidth
()
&&
preOutV
.
getHeight
()
==
height_
&&
preOutV
.
getWidth
()
==
width_
);
CHECK
(
denoms
.
getHeight
()
==
localGrad
.
getHeight
()
&&
denoms
.
getWidth
()
==
localGrad
.
getWidth
());
hl_CMRNorm_backward
(
num
,
preOutV
.
getData
(),
denoms
.
getData
(),
localOutV
.
getData
(),
localGrad
.
getData
(),
data_
,
channels
,
height
,
width
,
sizeX
,
-
pow
,
2.0
f
*
pow
*
scale
);
}
void
GpuMatrix
::
maxSequenceForward
(
Matrix
&
input
,
const
IVector
&
sequence
,
IVector
&
index
)
{
...
...
@@ -2219,119 +2156,6 @@ void CpuMatrix::avgPoolBackward(Matrix& input,
}
}
void
CpuMatrix
::
crossMapNormalFwd
(
Matrix
&
input
,
size_t
imgSizeH
,
size_t
imgSizeW
,
Matrix
&
denoms
,
size_t
channels
,
size_t
sizeX
,
float
scale
,
float
pow
)
{
CHECK
(
isContiguous
());
CHECK
(
input
.
isContiguous
());
CHECK
(
denoms
.
isContiguous
());
CHECK_EQ
(
getHeight
(),
input
.
getHeight
());
CHECK_EQ
(
getWidth
(),
input
.
getWidth
());
CHECK_EQ
(
getHeight
(),
denoms
.
getHeight
());
CHECK_EQ
(
getWidth
(),
denoms
.
getWidth
());
size_t
numSample
=
input
.
getHeight
();
size_t
numCols
=
input
.
getWidth
();
size_t
height
=
imgSizeH
;
size_t
width
=
imgSizeW
;
CHECK
(
height
*
width
*
channels
==
numCols
);
// TODO(hedaoyuan) After commit TensorExpress code,
// Reconstruction this code to remove the temporary memory.
CpuMatrix
tmp
(
channels
,
height
*
width
);
CpuMatrix
tmp2
(
tmp
.
getData
(),
1
,
channels
*
height
*
width
);
denoms
.
zero
();
const
int
start
=
-
((
int
)
sizeX
-
1
)
/
2
;
const
int
end
=
(
int
)
sizeX
+
start
;
for
(
size_t
i
=
0
;
i
<
numSample
;
i
++
)
{
input
.
subMatrix
(
i
,
1
)
->
square2
(
tmp2
);
CpuMatrix
subDen
(
denoms
.
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
for
(
int
c
=
0
;
c
<
(
int
)
channels
;
c
++
)
{
for
(
int
s
=
start
;
s
<
end
;
s
++
)
{
if
(
c
+
s
>=
0
&&
c
+
s
<
(
int
)
channels
)
{
subDen
.
subMatrix
(
c
,
1
)
->
add
(
*
tmp
.
subMatrix
(
c
+
s
,
1
));
}
}
}
}
denoms
.
add
(
scale
,
(
real
)
1
);
this
->
pow2
(
denoms
,
-
pow
);
this
->
dotMul
(
input
);
}
void
CpuMatrix
::
crossMapNormalBwd
(
Matrix
&
localGrad
,
Matrix
&
denoms
,
Matrix
&
preOutV
,
Matrix
&
localOutV
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
float
scale
,
float
pow
)
{
CHECK
(
isContiguous
());
CHECK
(
localGrad
.
isContiguous
());
CHECK
(
denoms
.
isContiguous
());
CHECK
(
preOutV
.
isContiguous
());
CHECK
(
localOutV
.
isContiguous
());
CHECK_EQ
(
getHeight
(),
localGrad
.
getHeight
());
CHECK_EQ
(
getWidth
(),
localGrad
.
getWidth
());
CHECK_EQ
(
getHeight
(),
denoms
.
getHeight
());
CHECK_EQ
(
getWidth
(),
denoms
.
getWidth
());
CHECK_EQ
(
getHeight
(),
preOutV
.
getHeight
());
CHECK_EQ
(
getWidth
(),
preOutV
.
getWidth
());
CHECK_EQ
(
getHeight
(),
localOutV
.
getHeight
());
CHECK_EQ
(
getWidth
(),
localOutV
.
getWidth
());
size_t
numSample
=
getHeight
();
size_t
numCols
=
getWidth
();
size_t
height
=
imgSizeH
;
size_t
width
=
imgSizeW
;
CHECK
(
height
*
width
*
channels
==
numCols
);
// TODO(hedaoyuan) After commit TensorExpress code,
// Reconstruction this code to remove the temporary memory.
CpuMatrix
tmp
(
1
,
height
*
width
);
const
int
start
=
-
((
int
)
sizeX
)
/
2
;
const
int
end
=
(
int
)
sizeX
+
start
;
const
real
ratio
=
-
(
real
)
2
*
scale
*
pow
;
for
(
size_t
i
=
0
;
i
<
numSample
;
i
++
)
{
CpuMatrix
inputDiff
(
this
->
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
CpuMatrix
outDiff
(
localGrad
.
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
CpuMatrix
input
(
preOutV
.
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
CpuMatrix
output
(
localOutV
.
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
CpuMatrix
subDen
(
denoms
.
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
for
(
int
c
=
0
;
c
<
(
int
)
channels
;
c
++
)
{
tmp
.
pow2
(
*
subDen
.
subMatrix
(
c
,
1
),
-
pow
);
inputDiff
.
subMatrix
(
c
,
1
)
->
addDotMul
(
tmp
,
*
outDiff
.
subMatrix
(
c
,
1
),
(
real
)
1
,
(
real
)
1
);
for
(
int
s
=
start
;
s
<
end
;
s
++
)
{
if
(
c
+
s
>=
0
&&
c
+
s
<
(
int
)
channels
)
{
tmp
.
dotMul
(
*
outDiff
.
subMatrix
(
c
+
s
,
1
),
*
output
.
subMatrix
(
c
+
s
,
1
));
tmp
.
mulScalar
(
ratio
);
tmp
.
dotDiv
(
tmp
,
*
subDen
.
subMatrix
(
c
+
s
,
1
));
tmp
.
dotMul
(
*
input
.
subMatrix
(
c
,
1
));
inputDiff
.
subMatrix
(
c
,
1
)
->
add
(
tmp
);
}
}
}
}
}
/**
* Input: one or more sequences. Each sequence contains some instances.
* Output: output size is the number of input sequences (NOT input instances).
...
...
paddle/math/Matrix.h
浏览文件 @
d11e2b40
...
...
@@ -952,31 +952,6 @@ public:
LOG
(
FATAL
)
<<
"Not implemeted"
;
}
/// normalize-operation.
virtual
void
crossMapNormalFwd
(
Matrix
&
input
,
size_t
imgSizeH
,
size_t
imgSizeW
,
Matrix
&
denoms
,
size_t
channels
,
size_t
sizeX
,
float
scale
,
float
pow
)
{
LOG
(
FATAL
)
<<
"Not implemeted"
;
}
virtual
void
crossMapNormalBwd
(
Matrix
&
localGrad
,
Matrix
&
denoms
,
Matrix
&
preOutV
,
Matrix
&
localOutV
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
size
,
float
scale
,
float
pow
)
{
LOG
(
FATAL
)
<<
"Not implemeted"
;
}
/**
* Input: one or more sequences. Each sequence contains some instances.
*
...
...
@@ -1459,26 +1434,6 @@ public:
size_t
paddingH
,
size_t
paddingW
);
void
crossMapNormalFwd
(
Matrix
&
input
,
size_t
imgSizeH
,
size_t
imgSizeW
,
Matrix
&
denoms
,
size_t
channels
,
size_t
sizeX
,
float
scale
,
float
pow
);
void
crossMapNormalBwd
(
Matrix
&
localGrad
,
Matrix
&
denoms
,
Matrix
&
preOutV
,
Matrix
&
localOutV
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
float
scale
,
float
pow
);
void
maxSequenceForward
(
Matrix
&
input
,
const
IVector
&
sequence
,
IVector
&
index
);
...
...
@@ -1685,26 +1640,6 @@ public:
size_t
paddingH
,
size_t
paddingW
);
void
crossMapNormalFwd
(
Matrix
&
input
,
size_t
imgSizeH
,
size_t
imgSizeW
,
Matrix
&
denoms
,
size_t
channels
,
size_t
sizeX
,
float
scale
,
float
pow
);
void
crossMapNormalBwd
(
Matrix
&
localGrad
,
Matrix
&
denoms
,
Matrix
&
preOutV
,
Matrix
&
localOutV
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
float
scale
,
float
pow
);
void
maxSequenceForward
(
Matrix
&
input
,
const
IVector
&
sequence
,
IVector
&
index
);
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
d11e2b40
...
...
@@ -1385,33 +1385,6 @@ void testCrossMapNormalBwd(
Tensor
(
denomsGpu
.
getData
(),
dims
)},
{
Tensor
(
inputsGradGpu
.
getData
(),
dims
)},
{});
#if 0
CrossMapNormalGrad<DEVICE_TYPE_CPU> cpuCross;
cpuCross(inputsGrad,
inputsValue,
outputsGrad,
outputsValue,
denoms,
channels,
imgSizeH,
imgSizeW,
sizeX,
scale,
pow);
CrossMapNormalGrad<DEVICE_TYPE_GPU> gpuCross;
gpuCross(inputsGradGpu,
inputsValueGpu,
outputsGradGpu,
outputsValueGpu,
denomsGpu,
channels,
imgSizeH,
imgSizeW,
sizeX,
scale,
pow);
#endif
TensorCheckErr
(
inputsGrad
,
inputsGradGpu
);
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录