Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d077c569
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d077c569
编写于
11月 11, 2019
作者:
Y
Yang Zhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add native implementation for soft nms
and refactor a bit
上级
17f7cbfa
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
260 addition
and
57 deletion
+260
-57
CMakeLists.txt
CMakeLists.txt
+31
-0
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+70
-57
src/binding.cc
src/binding.cc
+74
-0
src/nms.cc
src/nms.cc
+85
-0
未找到文件。
CMakeLists.txt
0 → 100644
浏览文件 @
d077c569
cmake_minimum_required
(
VERSION 3.8 FATAL_ERROR
)
set
(
CMAKE_CXX_STANDARD 11
)
set
(
PYBIND11_CPP_STANDARD -std=c++11
)
include
(
FetchContent
)
FetchContent_Declare
(
pybind11
GIT_REPOSITORY
"https://github.com/pybind/pybind11.git"
)
FetchContent_GetProperties
(
pybind11
)
if
(
NOT pybind11_POPULATED
)
FetchContent_Populate
(
pybind11
)
add_subdirectory
(
${
pybind11_SOURCE_DIR
}
)
endif
()
set
(
nms_SOURCES src/binding.cc src/nms.cc
)
add_library
(
nms MODULE
${
nms_SOURCES
}
)
set_target_properties
(
nms PROPERTIES
CXX_VISIBILITY_PRESET
"hidden"
PREFIX
"
${
PYTHON_MODULE_PREFIX
}
"
SUFFIX
"
${
PYTHON_MODULE_EXTENSION
}
"
OUTPUT_NAME
"nms"
)
target_compile_options
(
nms BEFORE PRIVATE $<$<COMPILE_LANGUAGE:CXX>:-g -O2 -fopenmp -mavx2>
)
target_link_libraries
(
nms PRIVATE -fopenmp
)
target_link_libraries
(
nms PRIVATE pybind11::module
)
execute_process
(
COMMAND
${
PYTHON_EXECUTABLE
}
"-c"
"import sysconfig; print(sysconfig.get_config_vars()['INCLUDEPY'])"
OUTPUT_VARIABLE PYTHON_INC_PATHS OUTPUT_STRIP_TRAILING_WHITESPACE
)
execute_process
(
COMMAND
${
PYTHON_EXECUTABLE
}
"-c"
"import sysconfig; print(sysconfig.get_config_vars()['BLDLIBRARY'])"
OUTPUT_VARIABLE PYTHON_LIB_FLAGS OUTPUT_STRIP_TRAILING_WHITESPACE
)
execute_process
(
COMMAND
${
PYTHON_EXECUTABLE
}
"-c"
"import sysconfig; print(sysconfig.get_config_vars().get('EXT_SUFFIX', 'so'))"
OUTPUT_VARIABLE EXT_SUFFIX OUTPUT_STRIP_TRAILING_WHITESPACE
)
install
(
TARGETS nms DESTINATION
${
CMAKE_HOME_DIRECTORY
}
/ppdet/modeling
)
ppdet/modeling/ops.py
浏览文件 @
d077c569
...
...
@@ -266,64 +266,82 @@ class MultiClassNMS(object):
@
register
@
serializable
class
MultiClassSoftNMS
(
object
):
def
__init__
(
self
,
score_threshold
=
0.01
,
keep_top_k
=
300
,
softnms_sigma
=
0.5
,
normalized
=
False
,
background_label
=
0
,
):
def
__init__
(
self
,
score_threshold
=
0.01
,
keep_top_k
=
300
,
softnms_sigma
=
0.5
,
normalized
=
False
,
background_label
=
0
,
Nt
=
0.3
,
method
=
'gaussian'
,
use_cpp
=
False
):
super
(
MultiClassSoftNMS
,
self
).
__init__
()
self
.
score_threshold
=
score_threshold
self
.
keep_top_k
=
keep_top_k
self
.
softnms_sigma
=
softnms_sigma
self
.
normalized
=
normalized
self
.
background_label
=
background_label
self
.
Nt
=
Nt
methods
=
[
'gaussian'
,
'linear'
,
'hard'
]
assert
method
in
methods
,
"supported methods are "
+
str
(
methods
)
self
.
method
=
method
self
.
use_cpp
=
use_cpp
if
not
use_cpp
:
return
try
:
from
ppdet.modeling.nms
import
NMSMethod
,
soft_nms
self
.
method
=
getattr
(
NMSMethod
,
method
.
upper
())
self
.
soft_nms_native
=
soft_nms
except
ImportError
:
print
(
"nms native extension not found, please build it with"
+
"`cmake -B build . ; cmake --build build -t install`"
)
def
per_class_soft_nms
(
self
,
dets
):
"""soft_nms_for_cls"""
if
self
.
use_cpp
:
keep
,
_
=
self
.
soft_nms_native
(
dets
,
self
.
method
,
Nt
=
self
.
Nt
,
sigma
=
self
.
softnms_sigma
,
threshold
=
self
.
score_threshold
)
return
keep
dets_final
=
[]
while
len
(
dets
)
>
0
:
maxpos
=
np
.
argmax
(
dets
[:,
0
])
dets_final
.
append
(
dets
[
maxpos
].
copy
())
ts
,
tx1
,
ty1
,
tx2
,
ty2
=
dets
[
maxpos
]
scores
=
dets
[:,
0
]
# force remove bbox at maxpos
scores
[
maxpos
]
=
-
1
x1
=
dets
[:,
1
]
y1
=
dets
[:,
2
]
x2
=
dets
[:,
3
]
y2
=
dets
[:,
4
]
eta
=
0
if
self
.
normalized
else
1
areas
=
(
x2
-
x1
+
eta
)
*
(
y2
-
y1
+
eta
)
xx1
=
np
.
maximum
(
tx1
,
x1
)
yy1
=
np
.
maximum
(
ty1
,
y1
)
xx2
=
np
.
minimum
(
tx2
,
x2
)
yy2
=
np
.
minimum
(
ty2
,
y2
)
w
=
np
.
maximum
(
0.0
,
xx2
-
xx1
+
eta
)
h
=
np
.
maximum
(
0.0
,
yy2
-
yy1
+
eta
)
inter
=
w
*
h
ovr
=
inter
/
(
areas
+
areas
[
maxpos
]
-
inter
)
weight
=
np
.
exp
(
-
(
ovr
*
ovr
)
/
self
.
softnms_sigma
)
scores
=
scores
*
weight
idx_keep
=
np
.
where
(
scores
>=
self
.
score_threshold
)
dets
[:,
0
]
=
scores
dets
=
dets
[
idx_keep
]
dets_final
=
np
.
array
(
dets_final
).
reshape
(
-
1
,
5
)
return
dets_final
def
__call__
(
self
,
bboxes
,
scores
):
def
create_tmp_var
(
program
,
name
,
dtype
,
shape
,
lod_level
):
return
program
.
current_block
().
create_var
(
name
=
name
,
dtype
=
dtype
,
shape
=
shape
,
lod_level
=
lod_level
)
def
_soft_nms_for_cls
(
dets
,
sigma
,
thres
):
"""soft_nms_for_cls"""
dets_final
=
[]
while
len
(
dets
)
>
0
:
maxpos
=
np
.
argmax
(
dets
[:,
0
])
dets_final
.
append
(
dets
[
maxpos
].
copy
())
ts
,
tx1
,
ty1
,
tx2
,
ty2
=
dets
[
maxpos
]
scores
=
dets
[:,
0
]
# force remove bbox at maxpos
scores
[
maxpos
]
=
-
1
x1
=
dets
[:,
1
]
y1
=
dets
[:,
2
]
x2
=
dets
[:,
3
]
y2
=
dets
[:,
4
]
eta
=
0
if
self
.
normalized
else
1
areas
=
(
x2
-
x1
+
eta
)
*
(
y2
-
y1
+
eta
)
xx1
=
np
.
maximum
(
tx1
,
x1
)
yy1
=
np
.
maximum
(
ty1
,
y1
)
xx2
=
np
.
minimum
(
tx2
,
x2
)
yy2
=
np
.
minimum
(
ty2
,
y2
)
w
=
np
.
maximum
(
0.0
,
xx2
-
xx1
+
eta
)
h
=
np
.
maximum
(
0.0
,
yy2
-
yy1
+
eta
)
inter
=
w
*
h
ovr
=
inter
/
(
areas
+
areas
[
maxpos
]
-
inter
)
weight
=
np
.
exp
(
-
(
ovr
*
ovr
)
/
sigma
)
scores
=
scores
*
weight
idx_keep
=
np
.
where
(
scores
>=
thres
)
dets
[:,
0
]
=
scores
dets
=
dets
[
idx_keep
]
dets_final
=
np
.
array
(
dets_final
).
reshape
(
-
1
,
5
)
return
dets_final
def
_soft_nms
(
bboxes
,
scores
):
bboxes
=
np
.
array
(
bboxes
)
scores
=
np
.
array
(
scores
)
class_nums
=
scores
.
shape
[
-
1
]
softnms_thres
=
self
.
score_threshold
softnms_sigma
=
self
.
softnms_sigma
keep_top_k
=
self
.
keep_top_k
cls_boxes
=
[[]
for
_
in
range
(
class_nums
)]
...
...
@@ -339,10 +357,9 @@ class MultiClassSoftNMS(object):
cls_rank
=
np
.
argsort
(
-
dets_j
[:,
0
])
dets_j
=
dets_j
[
cls_rank
]
cls_boxes
[
j
]
=
_soft_nms_for_cls
(
dets_j
,
sigma
=
softnms_sigma
,
thres
=
softnms_thres
)
cls_ids
[
j
]
=
np
.
array
([
j
]
*
cls_boxes
[
j
].
shape
[
0
]).
reshape
(
-
1
,
1
)
cls_boxes
[
j
]
=
self
.
per_class_soft_nms
(
dets_j
)
cls_ids
[
j
]
=
np
.
array
(
[
j
]
*
cls_boxes
[
j
].
shape
[
0
]).
reshape
(
-
1
,
1
)
cls_boxes
=
np
.
vstack
(
cls_boxes
[
start_idx
:])
cls_ids
=
np
.
vstack
(
cls_ids
[
start_idx
:])
...
...
@@ -360,17 +377,13 @@ class MultiClassSoftNMS(object):
if
pred_result
.
shape
[
0
]
==
0
:
pred_result
=
np
.
array
([[
1
]],
dtype
=
np
.
float32
)
res
.
set
(
pred_result
,
fluid
.
CPUPlace
())
return
res
pred_result
=
create_tmp_var
(
fluid
.
default_main_program
(),
name
=
'softnms_pred_result'
,
dtype
=
'float32'
,
shape
=
[
6
],
lod_level
=
1
)
fluid
.
layers
.
py_func
(
func
=
_soft_nms
,
x
=
[
bboxes
,
scores
],
out
=
pred_result
)
pred_result
=
fluid
.
default_main_program
().
current_block
().
create_var
(
name
=
'softnms_pred_result'
,
dtype
=
'float32'
,
shape
=
[
6
],
lod_leval
=
1
)
fluid
.
layers
.
py_func
(
func
=
_soft_nms
,
x
=
[
bboxes
,
scores
],
out
=
pred_result
)
return
pred_result
...
...
src/binding.cc
0 → 100644
浏览文件 @
d077c569
#include <bits/stdc++.h>
#include <pybind11/pybind11.h>
#include <pybind11/pytypes.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
namespace
nms
{
enum
class
Method
:
uint32_t
{
LINEAR
=
0
,
GAUSSIAN
,
HARD
};
size_t
soft_nms
(
float
*
boxes
,
int32_t
*
index
,
size_t
count
,
Method
method
,
float
Nt
,
float
sigma
,
float
threshold
);
}
// namespace nms
namespace
binding
{
namespace
py
=
pybind11
;
using
namespace
pybind11
::
literals
;
py
::
tuple
py_soft_nms
(
py
::
array_t
<
float
,
py
::
array
::
c_style
>
boxes
,
nms
::
Method
method
=
nms
::
Method
::
GAUSSIAN
,
float
Nt
=
0.3
,
float
sigma
=
0.5
,
float
threshold
=
0.001
)
{
assert
(
boxes
.
ndim
()
==
2
&&
"Input should be 2-D NumPy array"
);
assert
(
boxes
.
shape
()[
1
]
==
5
&&
"Input should have size [N,5]"
);
auto
count
=
boxes
.
size
()
/
5
;
auto
i
=
new
int32_t
[
count
];
auto
b
=
new
float
[
boxes
.
size
()];
std
::
copy
(
boxes
.
data
(),
boxes
.
data
()
+
boxes
.
size
(),
b
);
auto
N
=
nms
::
soft_nms
(
b
,
i
,
count
,
method
,
Nt
,
sigma
,
threshold
);
std
::
vector
<
size_t
>
shape5
=
{
N
,
5
};
std
::
vector
<
size_t
>
shape1
=
{
N
};
std
::
vector
<
ssize_t
>
strides5
=
{
sizeof
(
float
)
*
5
,
sizeof
(
float
)};
std
::
vector
<
ssize_t
>
strides1
=
{
sizeof
(
float
)};
auto
cap_b
=
py
::
capsule
(
b
,
[](
void
*
v
)
{
delete
[]
reinterpret_cast
<
float
*>
(
v
);
});
auto
cap_i
=
py
::
capsule
(
i
,
[](
void
*
v
)
{
delete
[]
reinterpret_cast
<
int32_t
*>
(
v
);
});
auto
pyb
=
py
::
array
(
py
::
dtype
(
"float32"
),
shape5
,
strides5
,
b
,
cap_b
);
auto
pyi
=
py
::
array
(
py
::
dtype
(
"int32"
),
shape1
,
strides1
,
i
,
cap_i
);
return
py
::
make_tuple
(
pyb
,
pyi
);
}
PYBIND11_MODULE
(
nms
,
m
)
{
m
.
doc
()
=
"SoftNMS for object detection."
;
py
::
enum_
<
nms
::
Method
>
(
m
,
"NMSMethod"
)
.
value
(
"LINEAR"
,
nms
::
Method
::
LINEAR
)
.
value
(
"GAUSSIAN"
,
nms
::
Method
::
GAUSSIAN
)
.
value
(
"HARD"
,
nms
::
Method
::
HARD
)
.
export_values
();
m
.
def
(
"soft_nms"
,
&
py_soft_nms
,
"boxes"
_a
.
noconvert
(),
"method"
_a
=
nms
::
Method
::
GAUSSIAN
,
"Nt"
_a
=
0.3
,
"sigma"
_a
=
0.5
,
"threshold"
_a
=
0.001
);
}
}
/* namespace binding */
src/nms.cc
0 → 100644
浏览文件 @
d077c569
#include <bits/stdc++.h>
namespace
nms
{
struct
proposal
{
float
score
,
x1
,
y1
,
x2
,
y2
;
};
inline
static
bool
cmp
(
const
proposal
&
a
,
const
proposal
&
b
)
{
return
a
.
score
<
b
.
score
;
}
inline
static
float
iou
(
const
proposal
&
,
const
proposal
&
)
__attribute__
((
always_inline
));
static
float
iou
(
const
proposal
&
a
,
const
proposal
&
b
)
{
auto
overlap
=
0.
f
;
float
iw
=
std
::
min
(
b
.
x2
,
a
.
x2
)
-
std
::
max
(
b
.
x1
,
a
.
x1
)
+
1
;
if
(
iw
>
0
)
{
float
ih
=
std
::
min
(
b
.
y2
,
a
.
y2
)
-
std
::
max
(
b
.
y1
,
a
.
y1
)
+
1
;
if
(
ih
>
0
)
{
float
ab
=
(
b
.
x2
-
b
.
x1
+
1
)
*
(
b
.
y2
-
b
.
y1
+
1
);
float
aa
=
(
a
.
x2
-
a
.
x1
+
1
)
*
(
a
.
y2
-
a
.
y1
+
1
);
float
inter
=
iw
*
ih
;
overlap
=
inter
/
(
aa
+
ab
-
inter
);
}
}
return
overlap
;
}
enum
class
Method
:
uint32_t
{
LINEAR
=
0
,
GAUSSIAN
,
HARD
};
size_t
soft_nms
(
float
*
boxes
,
int32_t
*
index
,
size_t
count
,
Method
method
,
float
Nt
,
float
sigma
,
float
threshold
)
{
std
::
iota
(
index
,
index
+
count
,
0
);
// np.arange()
auto
p
=
reinterpret_cast
<
proposal
*>
(
boxes
);
auto
N
=
count
;
for
(
size_t
i
=
0
;
i
<
N
;
++
i
)
{
auto
max
=
std
::
max_element
(
p
+
i
,
p
+
N
,
cmp
);
std
::
swap
(
p
[
i
],
*
max
);
std
::
swap
(
index
[
i
],
index
[
max
-
p
]);
auto
j
=
i
+
1
;
auto
weight
=
0.
f
;
while
(
j
<
N
)
{
auto
ov
=
iou
(
p
[
i
],
p
[
j
]);
switch
(
method
)
{
case
Method
::
LINEAR
:
weight
=
ov
>
Nt
?
1.
f
-
ov
:
1.
f
;
break
;
case
Method
::
GAUSSIAN
:
weight
=
std
::
exp
(
-
(
ov
*
ov
)
/
sigma
);
break
;
case
Method
::
HARD
:
weight
=
ov
>
Nt
?
0.
f
:
1.
f
;
break
;
}
p
[
j
].
score
*=
weight
;
if
(
p
[
j
].
score
<
threshold
)
{
N
--
;
std
::
swap
(
p
[
j
],
p
[
N
]);
std
::
swap
(
index
[
j
],
index
[
N
]);
j
--
;
}
j
++
;
}
};
return
N
;
}
}
/* namespace nms */
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录