Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ce72c3ff
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ce72c3ff
编写于
5月 10, 2018
作者:
C
chengduo
提交者:
GitHub
5月 10, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10476 from chengduoZH/refine_parallel_exe
Clean Parallel exe
上级
61343fbf
a89cd467
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
191 addition
and
142 deletion
+191
-142
paddle/fluid/framework/details/broadcast_op_handle.cc
paddle/fluid/framework/details/broadcast_op_handle.cc
+32
-28
paddle/fluid/framework/details/broadcast_op_handle.h
paddle/fluid/framework/details/broadcast_op_handle.h
+3
-1
paddle/fluid/framework/details/computation_op_handle.cc
paddle/fluid/framework/details/computation_op_handle.cc
+8
-8
paddle/fluid/framework/details/computation_op_handle.h
paddle/fluid/framework/details/computation_op_handle.h
+2
-0
paddle/fluid/framework/details/fetch_op_handle.cc
paddle/fluid/framework/details/fetch_op_handle.cc
+12
-9
paddle/fluid/framework/details/fetch_op_handle.h
paddle/fluid/framework/details/fetch_op_handle.h
+3
-1
paddle/fluid/framework/details/gather_op_handle.cc
paddle/fluid/framework/details/gather_op_handle.cc
+1
-12
paddle/fluid/framework/details/gather_op_handle.h
paddle/fluid/framework/details/gather_op_handle.h
+0
-1
paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
+1
-6
paddle/fluid/framework/details/op_handle_base.cc
paddle/fluid/framework/details/op_handle_base.cc
+25
-3
paddle/fluid/framework/details/op_handle_base.h
paddle/fluid/framework/details/op_handle_base.h
+13
-1
paddle/fluid/framework/details/reduce_op_handle.cc
paddle/fluid/framework/details/reduce_op_handle.cc
+12
-21
paddle/fluid/framework/details/reduce_op_handle.h
paddle/fluid/framework/details/reduce_op_handle.h
+0
-2
paddle/fluid/framework/details/scale_loss_grad_op_handle.cc
paddle/fluid/framework/details/scale_loss_grad_op_handle.cc
+1
-0
paddle/fluid/framework/details/send_op_handle.cc
paddle/fluid/framework/details/send_op_handle.cc
+2
-1
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+60
-48
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+16
-0
未找到文件。
paddle/fluid/framework/details/broadcast_op_handle.cc
浏览文件 @
ce72c3ff
...
...
@@ -38,9 +38,7 @@ void BroadcastOpHandle::RunImpl() {
out_var_handles
.
size
(),
places_
.
size
(),
"The number of output should equal to the number of places."
);
// Wait input done, this Wait is asynchronous operation platform::Place
// &in_place;
WaitInputVarGenerated
(
*
in_var_handle
);
WaitInputVarGenerated
();
std
::
vector
<
const
Scope
*>
var_scopes
;
for
(
auto
*
s
:
local_scopes_
)
{
...
...
@@ -50,29 +48,9 @@ void BroadcastOpHandle::RunImpl() {
auto
*
in_var
=
var_scopes
.
at
(
in_var_handle
->
scope_idx_
)
->
FindVar
(
in_var_handle
->
name_
);
PADDLE_ENFORCE_NOT_NULL
(
in_var
);
Tensor
&
in_tensor
=
VariableVisitor
::
GetMutableTensor
(
in_var
);
// NOTE: The tensors' Place of input and output must be all on GPU or all on
// CPU.
for
(
auto
*
out_var_handle
:
out_var_handles
)
{
if
(
out_var_handle
->
IsTheSameVar
(
*
in_var_handle
))
{
continue
;
}
auto
t_out_p
=
out_var_handle
->
place_
;
auto
*
out_var
=
var_scopes
.
at
(
out_var_handle
->
scope_idx_
)
->
FindVar
(
out_var_handle
->
name_
);
PADDLE_ENFORCE_NOT_NULL
(
out_var
);
if
(
platform
::
is_gpu_place
(
in_tensor
.
place
()))
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
t_out_p
),
"Places of input and output must be all on GPU."
);
}
else
{
t_out_p
=
platform
::
CPUPlace
();
}
VariableVisitor
::
ShareDimsAndLoD
(
*
in_var
,
out_var
);
VariableVisitor
::
GetMutableTensor
(
out_var
).
mutable_data
(
t_out_p
,
in_tensor
.
type
());
}
InitOutputValue
(
*
in_var_handle
,
out_var_handles
);
if
(
platform
::
is_cpu_place
(
in_tensor
.
place
()))
{
for
(
auto
*
out_var_handle
:
out_var_handles
)
{
...
...
@@ -147,11 +125,37 @@ void BroadcastOpHandle::RunImpl() {
}
}
void
BroadcastOpHandle
::
WaitInputVarGenerated
(
const
VarHandle
&
in_var
)
{
if
(
in_var
.
generated_op_
)
{
for
(
auto
&
pair
:
dev_ctxes_
)
{
in_var
.
generated_op_
->
Wait
(
pair
.
second
);
void
BroadcastOpHandle
::
InitOutputValue
(
const
VarHandle
&
in_var_handle
,
const
std
::
vector
<
VarHandle
*>
&
out_var_handles
)
const
{
std
::
vector
<
const
Scope
*>
var_scopes
;
for
(
auto
*
s
:
local_scopes_
)
{
var_scopes
.
emplace_back
(
s
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
());
}
auto
*
in_var
=
var_scopes
.
at
(
in_var_handle
.
scope_idx_
)
->
FindVar
(
in_var_handle
.
name_
);
Tensor
&
in_tensor
=
VariableVisitor
::
GetMutableTensor
(
in_var
);
// NOTE: The tensors' Place of input and output must be all on GPU or all on
// CPU.
for
(
auto
*
out_var_handle
:
out_var_handles
)
{
if
(
out_var_handle
->
IsTheSameVar
(
in_var_handle
))
{
continue
;
}
auto
t_out_p
=
out_var_handle
->
place_
;
auto
*
out_var
=
var_scopes
.
at
(
out_var_handle
->
scope_idx_
)
->
FindVar
(
out_var_handle
->
name_
);
PADDLE_ENFORCE_NOT_NULL
(
out_var
);
if
(
is_gpu_place
(
in_tensor
.
place
()))
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
t_out_p
),
"Places of input and output must be all on GPU."
);
}
else
{
t_out_p
=
platform
::
CPUPlace
();
}
VariableVisitor
::
ShareDimsAndLoD
(
*
in_var
,
out_var
);
VariableVisitor
::
GetMutableTensor
(
out_var
).
mutable_data
(
t_out_p
,
in_tensor
.
type
());
}
}
...
...
paddle/fluid/framework/details/broadcast_op_handle.h
浏览文件 @
ce72c3ff
...
...
@@ -57,7 +57,6 @@ struct BroadcastOpHandle : public OpHandleBase {
protected:
void
RunImpl
()
override
;
void
WaitInputVarGenerated
(
const
VarHandle
&
in_var
);
private:
const
std
::
vector
<
Scope
*>
&
local_scopes_
;
...
...
@@ -65,6 +64,9 @@ struct BroadcastOpHandle : public OpHandleBase {
#ifdef PADDLE_WITH_CUDA
const
platform
::
NCCLContextMap
*
nccl_ctxs_
;
#endif
void
InitOutputValue
(
const
VarHandle
&
in_var_handle
,
const
std
::
vector
<
VarHandle
*>
&
out_var_handles
)
const
;
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/computation_op_handle.cc
浏览文件 @
ce72c3ff
...
...
@@ -26,20 +26,20 @@ ComputationOpHandle::ComputationOpHandle(const OpDesc &op_desc, Scope *scope,
place_
(
place
)
{}
void
ComputationOpHandle
::
RunImpl
()
{
auto
*
cur_ctx
=
dev_ctxes_
[
place_
];
for
(
auto
*
in
:
inputs_
)
{
bool
need_wait
=
in
->
generated_op_
&&
in
->
generated_op_
->
DeviceContext
(
place_
)
!=
cur_ctx
;
if
(
need_wait
)
{
in
->
generated_op_
->
Wait
(
cur_ctx
);
}
}
WaitInputVarGenerated
(
place_
);
this
->
RunAndRecordEvent
([
this
]
{
op_
->
Run
(
*
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
(),
place_
);
});
}
bool
ComputationOpHandle
::
NeedWait
(
VarHandleBase
*
in_var
)
{
bool
need_wait
=
in_var
&&
in_var
->
generated_op_
&&
in_var
->
generated_op_
->
DeviceContext
(
place_
)
!=
dev_ctxes_
[
place_
];
return
need_wait
;
}
std
::
string
ComputationOpHandle
::
Name
()
const
{
return
op_
->
Type
();
}
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/computation_op_handle.h
浏览文件 @
ce72c3ff
...
...
@@ -36,6 +36,8 @@ struct ComputationOpHandle : public OpHandleBase {
protected:
void
RunImpl
()
override
;
virtual
bool
NeedWait
(
VarHandleBase
*
in_var
);
private:
std
::
unique_ptr
<
OperatorBase
>
op_
;
Scope
*
scope_
;
...
...
paddle/fluid/framework/details/fetch_op_handle.cc
浏览文件 @
ce72c3ff
...
...
@@ -31,7 +31,7 @@ FetchOpHandle::~FetchOpHandle() {
}
}
void
FetchOpHandle
::
Wait
(
platform
::
DeviceContext
*
waited_dev
)
{
void
FetchOpHandle
::
RecordWaitEventOnCtx
(
platform
::
DeviceContext
*
waited_ctx
)
{
PADDLE_THROW
(
"Nobody should wait FetchOp. Unexpceted Error"
);
}
...
...
@@ -45,14 +45,8 @@ void FetchOpHandle::WaitAndMergeCPUTensors() const {
}
void
FetchOpHandle
::
RunImpl
()
{
auto
cpu_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CPUPlace
());
for
(
auto
*
input
:
inputs_
)
{
auto
*
var
=
static_cast
<
VarHandle
*>
(
input
);
if
(
var
->
generated_op_
)
{
var
->
generated_op_
->
Wait
(
cpu_ctx
);
}
}
WaitInputVarGenerated
(
platform
::
CPUPlace
());
tensors_
.
resize
(
inputs_
.
size
());
auto
*
var_handle
=
static_cast
<
VarHandle
*>
(
inputs_
[
0
]);
auto
&
var_name
=
var_handle
->
name_
;
...
...
@@ -79,6 +73,15 @@ void FetchOpHandle::RunImpl() {
this
->
WaitAndMergeCPUTensors
();
}
void
FetchOpHandle
::
WaitInputVarGenerated
(
const
platform
::
Place
&
place
)
{
auto
cpu_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
for
(
auto
*
input
:
inputs_
)
{
if
(
input
->
generated_op_
)
{
input
->
generated_op_
->
RecordWaitEventOnCtx
(
cpu_ctx
);
}
}
}
std
::
string
FetchOpHandle
::
Name
()
const
{
return
"Fetch"
;
}
}
// namespace details
...
...
paddle/fluid/framework/details/fetch_op_handle.h
浏览文件 @
ce72c3ff
...
...
@@ -33,7 +33,7 @@ struct FetchOpHandle : public OpHandleBase {
~
FetchOpHandle
();
void
Wait
(
platform
::
DeviceContext
*
waited_dev
)
override
;
void
RecordWaitEventOnCtx
(
platform
::
DeviceContext
*
waited_ctx
)
override
;
void
WaitAndMergeCPUTensors
()
const
;
...
...
@@ -42,6 +42,8 @@ struct FetchOpHandle : public OpHandleBase {
protected:
void
RunImpl
()
override
;
virtual
void
WaitInputVarGenerated
(
const
platform
::
Place
&
place
);
private:
FeedFetchList
*
data_
;
size_t
offset_
;
...
...
paddle/fluid/framework/details/gather_op_handle.cc
浏览文件 @
ce72c3ff
...
...
@@ -55,7 +55,7 @@ void GatherOpHandle::RunImpl() {
"Currently, gather_op only can gather SelectedRows."
);
// Wait input done, this Wait is asynchronous operation
WaitInputVarGenerated
(
in_var_handles
);
WaitInputVarGenerated
();
auto
&
pre_in_value
=
pre_in_var
->
Get
<
framework
::
SelectedRows
>
();
std
::
vector
<
int64_t
>
out_rows
;
...
...
@@ -111,17 +111,6 @@ void GatherOpHandle::RunImpl() {
});
}
void
GatherOpHandle
::
WaitInputVarGenerated
(
const
std
::
vector
<
VarHandle
*>
&
in_var_handles
)
{
for
(
auto
*
in
:
in_var_handles
)
{
if
(
in
->
generated_op_
)
{
for
(
auto
pair
:
dev_ctxes_
)
{
in
->
generated_op_
->
Wait
(
pair
.
second
);
}
}
}
}
std
::
string
GatherOpHandle
::
Name
()
const
{
return
"gather"
;
}
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/gather_op_handle.h
浏览文件 @
ce72c3ff
...
...
@@ -39,7 +39,6 @@ struct GatherOpHandle : public OpHandleBase {
protected:
void
RunImpl
()
override
;
void
WaitInputVarGenerated
(
const
std
::
vector
<
VarHandle
*>
&
in_var_handles
);
private:
const
std
::
vector
<
Scope
*>
&
local_scopes_
;
...
...
paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
浏览文件 @
ce72c3ff
...
...
@@ -34,12 +34,7 @@ void NCCLAllReduceOpHandle::RunImpl() {
return
;
// No need to all reduce when GPU count = 1;
}
else
{
// Wait input done
for
(
auto
*
in
:
inputs_
)
{
auto
&
p
=
static_cast
<
VarHandle
*>
(
in
)
->
place_
;
if
(
in
->
generated_op_
)
{
in
->
generated_op_
->
Wait
(
dev_ctxes_
[
p
]);
}
}
WaitInputVarGenerated
();
auto
&
var_name
=
static_cast
<
VarHandle
*>
(
this
->
inputs_
[
0
])
->
name_
;
int
dtype
=
-
1
;
...
...
paddle/fluid/framework/details/op_handle_base.cc
浏览文件 @
ce72c3ff
...
...
@@ -56,15 +56,15 @@ void OpHandleBase::Run(bool use_event) {
RunImpl
();
}
void
OpHandleBase
::
Wait
(
platform
::
DeviceContext
*
waited_dev
)
{
void
OpHandleBase
::
RecordWaitEventOnCtx
(
platform
::
DeviceContext
*
waited_ctx
)
{
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_cpu_place
(
waited_
dev
->
GetPlace
())
||
events_
.
empty
())
{
if
(
platform
::
is_cpu_place
(
waited_
ctx
->
GetPlace
())
||
events_
.
empty
())
{
for
(
auto
&
dev_ctx
:
dev_ctxes_
)
{
dev_ctx
.
second
->
Wait
();
}
}
else
{
auto
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
waited_
dev
)
->
stream
();
static_cast
<
platform
::
CUDADeviceContext
*>
(
waited_
ctx
)
->
stream
();
for
(
auto
&
ev
:
events_
)
{
PADDLE_ENFORCE
(
cudaStreamWaitEvent
(
stream
,
ev
.
second
,
0
));
}
...
...
@@ -86,6 +86,28 @@ void OpHandleBase::AddOutput(VarHandleBase *out) {
out
->
generated_op_
=
this
;
}
void
OpHandleBase
::
WaitInputVarGenerated
()
{
for
(
auto
in_var
:
inputs_
)
{
if
(
NeedWait
(
in_var
))
{
for
(
auto
&
pair
:
dev_ctxes_
)
{
in_var
->
generated_op_
->
RecordWaitEventOnCtx
(
pair
.
second
);
}
}
}
}
void
OpHandleBase
::
WaitInputVarGenerated
(
const
platform
::
Place
&
place
)
{
for
(
auto
*
in
:
inputs_
)
{
if
(
NeedWait
(
in
))
{
in
->
generated_op_
->
RecordWaitEventOnCtx
(
dev_ctxes_
[
place
]);
}
}
}
bool
OpHandleBase
::
NeedWait
(
VarHandleBase
*
in_var
)
{
return
in_var
&&
in_var
->
generated_op_
;
}
void
OpHandleBase
::
RunAndRecordEvent
(
const
std
::
function
<
void
()
>
&
callback
)
{
#ifdef PADDLE_WITH_CUDA
if
(
!
events_
.
empty
())
{
// Use event
...
...
paddle/fluid/framework/details/op_handle_base.h
浏览文件 @
ce72c3ff
...
...
@@ -38,12 +38,24 @@ class OpHandleBase {
void
Run
(
bool
use_event
);
virtual
void
Wait
(
platform
::
DeviceContext
*
waited_dev
);
virtual
void
RecordWaitEventOnCtx
(
platform
::
DeviceContext
*
waited_ctx
);
void
AddInput
(
VarHandleBase
*
in
);
void
AddOutput
(
VarHandleBase
*
out
);
// This method adds the wait events of all the input on all the device
// context.
// NODE: This Wait is asynchronous operation.
virtual
void
WaitInputVarGenerated
();
// This method adds the wait events of all the input on the specified device
// context.
// NODE: This Wait is asynchronous operation.
virtual
void
WaitInputVarGenerated
(
const
platform
::
Place
&
place
);
virtual
bool
NeedWait
(
VarHandleBase
*
in_var
);
// If the Op involves data transfer of multiple devices that
// will likely block other computations.
virtual
bool
IsMultiDeviceTransfer
()
{
return
false
;
}
...
...
paddle/fluid/framework/details/reduce_op_handle.cc
浏览文件 @
ce72c3ff
...
...
@@ -51,7 +51,7 @@ void ReduceOpHandle::RunImpl() {
PADDLE_ENFORCE_NOT_NULL
(
pre_in_var
);
// Wait input done, this Wait is asynchronous operation
WaitInputVarGenerated
(
in_var_handles
);
WaitInputVarGenerated
();
// NOTE: The Places of all input tensor must be all on CPU or all on GPU.
std
::
vector
<
platform
::
Place
>
in_places
;
// used to get dev_ctx
...
...
@@ -80,19 +80,21 @@ void ReduceOpHandle::RunImpl() {
}
if
(
pre_in_var
->
IsType
<
framework
::
SelectedRows
>
())
{
std
::
vector
<
const
SelectedRows
*>
in_selected_rows
=
GetInputValues
<
SelectedRows
>
(
in_var_handles
,
var_scopes
);
GatherSelectedRows
(
in_selected_rows
,
in_places
,
dev_ctxes_
,
t_out_p
,
out_var
->
GetMutable
<
framework
::
SelectedRows
>
());
this
->
RunAndRecordEvent
([
&
]
{
std
::
vector
<
const
SelectedRows
*>
in_selected_rows
=
GetInputValues
<
SelectedRows
>
(
in_var_handles
,
var_scopes
);
GatherSelectedRows
(
in_selected_rows
,
in_places
,
dev_ctxes_
,
t_out_p
,
out_var
->
GetMutable
<
framework
::
SelectedRows
>
());
});
}
else
{
std
::
vector
<
const
LoDTensor
*>
lod_tensors
=
GetInputValues
<
LoDTensor
>
(
in_var_handles
,
var_scopes
);
if
(
paddle
::
platform
::
is_cpu_place
(
lod_tensors
[
0
]
->
place
()))
{
ReduceLoDTensor
func
(
lod_tensors
,
out_var
->
GetMutable
<
framework
::
LoDTensor
>
());
VisitDataType
(
ToDataType
(
lod_tensors
[
0
]
->
type
()),
func
);
this
->
RunAndRecordEvent
([
&
]
{
ReduceLoDTensor
func
(
lod_tensors
,
out_var
->
GetMutable
<
framework
::
LoDTensor
>
());
VisitDataType
(
ToDataType
(
lod_tensors
[
0
]
->
type
()),
func
);
});
}
else
if
(
paddle
::
platform
::
is_gpu_place
(
lod_tensors
[
0
]
->
place
()))
{
#ifdef PADDLE_WITH_CUDA
auto
pre_in
=
pre_in_var
->
Get
<
framework
::
LoDTensor
>
();
...
...
@@ -157,17 +159,6 @@ std::vector<const T *> ReduceOpHandle::GetInputValues(
return
in_selected_rows
;
}
void
ReduceOpHandle
::
WaitInputVarGenerated
(
const
std
::
vector
<
VarHandle
*>
&
in_var_handles
)
{
for
(
auto
*
in
:
in_var_handles
)
{
if
(
in
->
generated_op_
)
{
for
(
auto
pair
:
dev_ctxes_
)
{
in
->
generated_op_
->
Wait
(
pair
.
second
);
}
}
}
}
std
::
string
ReduceOpHandle
::
Name
()
const
{
return
"reduce"
;
}
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/reduce_op_handle.h
浏览文件 @
ce72c3ff
...
...
@@ -60,8 +60,6 @@ struct ReduceOpHandle : public OpHandleBase {
protected:
void
RunImpl
()
override
;
void
WaitInputVarGenerated
(
const
std
::
vector
<
VarHandle
*>
&
in_var_handles
);
template
<
typename
T
>
std
::
vector
<
const
T
*>
GetInputValues
(
const
std
::
vector
<
VarHandle
*>
&
in_var_handles
,
...
...
paddle/fluid/framework/details/scale_loss_grad_op_handle.cc
浏览文件 @
ce72c3ff
...
...
@@ -29,6 +29,7 @@ ScaleLossGradOpHandle::ScaleLossGradOpHandle(size_t num_dev, Scope *scope,
ScaleLossGradOpHandle
::~
ScaleLossGradOpHandle
()
{}
void
ScaleLossGradOpHandle
::
RunImpl
()
{
// Doesn't wait any event
std
::
string
var_name
=
static_cast
<
VarHandle
*>
(
this
->
outputs_
[
0
])
->
name_
;
auto
&
local_scope
=
*
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
...
...
paddle/fluid/framework/details/send_op_handle.cc
浏览文件 @
ce72c3ff
...
...
@@ -26,6 +26,7 @@ SendOpHandle::SendOpHandle(const framework::OpDesc &op_desc,
place_
(
place
)
{}
void
SendOpHandle
::
RunImpl
()
{
// TODO(wuyi): need further analysis whether wait VarDummyHandle.
// Wait input done
for
(
auto
*
in
:
inputs_
)
{
auto
&
p
=
static_cast
<
VarHandle
*>
(
in
)
->
place_
;
...
...
@@ -33,7 +34,7 @@ void SendOpHandle::RunImpl() {
continue
;
}
if
(
in
->
generated_op_
)
{
in
->
generated_op_
->
Wait
(
dev_ctxes_
[
p
]);
in
->
generated_op_
->
RecordWaitEventOnCtx
(
dev_ctxes_
[
p
]);
}
}
auto
&
tmp_scope
=
local_scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
ce72c3ff
...
...
@@ -14,8 +14,6 @@
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/fetch_op_handle.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
...
...
@@ -45,73 +43,33 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
// Should revisit it if overlapping is available.
std
::
unordered_set
<
OpHandleBase
*>
delayed_ops
;
auto
InsertPendingVar
=
[
&
pending_vars
,
&
ready_vars
](
VarHandleBase
&
var
)
{
pending_vars
.
insert
(
&
var
);
if
(
var
.
generated_op_
==
nullptr
)
{
ready_vars
.
Push
(
&
var
);
}
};
auto
InsertPendingOp
=
[
&
pending_ops
](
OpHandleBase
&
op_instance
)
{
pending_ops
.
insert
({
&
op_instance
,
op_instance
.
Inputs
().
size
()});
};
// Transform SSAGraph to pending_ops & pending_vars
for
(
auto
&
var_map
:
graph_
->
vars_
)
{
for
(
auto
&
name_pair
:
var_map
)
{
for
(
auto
&
version_pair
:
name_pair
.
second
)
{
InsertPendingVar
(
*
version_pair
);
InsertPendingVar
(
&
pending_vars
,
&
ready_vars
,
version_pair
.
get
()
);
}
}
}
for
(
auto
&
var
:
graph_
->
dep_vars_
)
{
InsertPendingVar
(
*
var
);
InsertPendingVar
(
&
pending_vars
,
&
ready_vars
,
var
.
get
()
);
}
for
(
auto
&
op
:
graph_
->
ops_
)
{
if
(
op
->
Inputs
().
empty
())
{
// Special case, Op has no input.
ready_ops
.
insert
(
op
.
get
());
}
else
{
InsertPendingOp
(
*
op
);
InsertPendingOp
(
&
pending_ops
,
op
.
get
()
);
}
}
// Step 2. Insert FetchOps
std
::
vector
<
std
::
unique_ptr
<
FetchOpHandle
>>
fetch_ops
;
FeedFetchList
fetch_data
(
fetch_tensors
.
size
());
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandleBase
*>>
fetched_vars
;
for
(
auto
&
fetch_var_name
:
fetch_tensors
)
{
for
(
auto
&
var_map
:
graph_
->
vars_
)
{
auto
it
=
var_map
.
find
(
fetch_var_name
);
if
(
it
!=
var_map
.
end
())
{
fetched_vars
[
fetch_var_name
].
push_back
(
it
->
second
.
rbegin
()
->
get
());
}
}
}
std
::
unordered_set
<
std
::
unique_ptr
<
VarHandleBase
>>
fetch_dependencies
;
for
(
size_t
i
=
0
;
i
<
fetch_tensors
.
size
();
++
i
)
{
auto
&
var_name
=
fetch_tensors
[
i
];
auto
&
vars
=
fetched_vars
.
at
(
var_name
);
auto
*
op
=
new
FetchOpHandle
(
&
fetch_data
,
i
,
&
local_scopes_
);
fetch_ops
.
emplace_back
(
op
);
for
(
auto
&
p
:
places_
)
{
op
->
SetDeviceContext
(
p
,
fetch_ctxs_
.
Get
(
p
));
}
for
(
auto
*
var
:
vars
)
{
op
->
AddInput
(
var
);
}
FeedFetchList
fetch_data
(
fetch_tensors
.
size
());
auto
*
fetch_dummy
=
new
DummyVarHandle
();
op
->
AddOutput
(
fetch_dummy
);
fetch_dependencies
.
emplace
(
fetch_dummy
);
InsertPendingVar
(
*
fetch_dummy
);
InsertPendingOp
(
*
op
);
}
InsertFetchOps
(
fetch_tensors
,
&
fetch_ops
,
&
fetch_dependencies
,
&
pending_ops
,
&
pending_vars
,
&
ready_vars
,
&
fetch_data
);
auto
run_all_ops
=
[
&
](
std
::
unordered_set
<
OpHandleBase
*>
&
set
)
{
for
(
auto
*
op
:
set
)
{
...
...
@@ -174,6 +132,60 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
return
fetch_data
;
}
void
ThreadedSSAGraphExecutor
::
InsertFetchOps
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
std
::
vector
<
std
::
unique_ptr
<
FetchOpHandle
>>
*
fetch_ops
,
std
::
unordered_set
<
std
::
unique_ptr
<
VarHandleBase
>>
*
fetch_dependencies
,
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
std
::
unordered_set
<
VarHandleBase
*>
*
pending_vars
,
BlockingQueue
<
VarHandleBase
*>
*
ready_vars
,
FeedFetchList
*
fetch_data
)
{
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandleBase
*>>
fetched_vars
;
for
(
auto
&
fetch_var_name
:
fetch_tensors
)
{
for
(
auto
&
var_map
:
graph_
->
vars_
)
{
auto
it
=
var_map
.
find
(
fetch_var_name
);
if
(
it
!=
var_map
.
end
())
{
fetched_vars
[
fetch_var_name
].
push_back
(
it
->
second
.
rbegin
()
->
get
());
}
}
}
for
(
size_t
i
=
0
;
i
<
fetch_tensors
.
size
();
++
i
)
{
auto
&
var_name
=
fetch_tensors
[
i
];
auto
&
vars
=
fetched_vars
.
at
(
var_name
);
auto
*
op
=
new
FetchOpHandle
(
fetch_data
,
i
,
&
local_scopes_
);
fetch_ops
->
emplace_back
(
op
);
for
(
auto
&
p
:
places_
)
{
op
->
SetDeviceContext
(
p
,
fetch_ctxs_
.
Get
(
p
));
}
for
(
auto
*
var
:
vars
)
{
op
->
AddInput
(
var
);
}
auto
*
fetch_dummy
=
new
DummyVarHandle
();
op
->
AddOutput
(
fetch_dummy
);
fetch_dependencies
->
emplace
(
fetch_dummy
);
this
->
InsertPendingVar
(
pending_vars
,
ready_vars
,
fetch_dummy
);
this
->
InsertPendingOp
(
pending_ops
,
op
);
}
}
void
ThreadedSSAGraphExecutor
::
InsertPendingOp
(
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
OpHandleBase
*
op_instance
)
const
{
pending_ops
->
insert
({
op_instance
,
op_instance
->
Inputs
().
size
()});
}
void
ThreadedSSAGraphExecutor
::
InsertPendingVar
(
std
::
unordered_set
<
VarHandleBase
*>
*
pending_vars
,
BlockingQueue
<
VarHandleBase
*>
*
ready_vars
,
VarHandleBase
*
var
)
const
{
pending_vars
->
insert
(
var
);
if
(
var
->
generated_op_
==
nullptr
)
{
ready_vars
->
Push
(
var
);
}
}
void
ThreadedSSAGraphExecutor
::
RunOp
(
BlockingQueue
<
VarHandleBase
*>
*
ready_var_q
,
details
::
OpHandleBase
*
op
)
{
auto
op_run
=
[
ready_var_q
,
op
,
this
]
{
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
ce72c3ff
...
...
@@ -23,6 +23,7 @@
#include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h"
namespace
paddle
{
...
...
@@ -58,6 +59,21 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std
::
unique_ptr
<
platform
::
EnforceNotMet
>
exception_
;
std
::
atomic
<
int
>
running_ops_
;
bool
allow_op_delay_
;
void
InsertPendingOp
(
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
OpHandleBase
*
op_instance
)
const
;
void
InsertPendingVar
(
std
::
unordered_set
<
VarHandleBase
*>
*
pending_vars
,
BlockingQueue
<
VarHandleBase
*>
*
ready_vars
,
VarHandleBase
*
var
)
const
;
void
InsertFetchOps
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
std
::
vector
<
std
::
unique_ptr
<
FetchOpHandle
>>
*
fetch_ops
,
std
::
unordered_set
<
std
::
unique_ptr
<
VarHandleBase
>>
*
fetch_dependencies
,
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
std
::
unordered_set
<
VarHandleBase
*>
*
pending_vars
,
BlockingQueue
<
VarHandleBase
*>
*
ready_vars
,
FeedFetchList
*
fetch_data
);
};
}
// namespace details
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录