Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
cd8b44c5
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cd8b44c5
编写于
9月 02, 2019
作者:
Y
Yuan Gao
提交者:
wangguanzhong
9月 02, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add group normalization head to cascade mask rcnn (#3237)
* add cascade gn * add cascade mask gn config * update configs
上级
c0aba53f
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
239 addition
and
71 deletion
+239
-71
configs/cascade_mask_rcnn_r50_fpn_1x.yml
configs/cascade_mask_rcnn_r50_fpn_1x.yml
+3
-3
configs/cascade_rcnn_r50_fpn_1x.yml
configs/cascade_rcnn_r50_fpn_1x.yml
+3
-3
configs/dcn/cascade_rcnn_dcn_r101_vd_fpn_1x.yml
configs/dcn/cascade_rcnn_dcn_r101_vd_fpn_1x.yml
+3
-3
configs/dcn/cascade_rcnn_dcn_r50_fpn_1x.yml
configs/dcn/cascade_rcnn_dcn_r50_fpn_1x.yml
+3
-3
configs/dcn/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.yml
configs/dcn/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.yml
+3
-3
configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x.yml
configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x.yml
+147
-0
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+6
-3
ppdet/modeling/roi_heads/cascade_head.py
ppdet/modeling/roi_heads/cascade_head.py
+71
-53
未找到文件。
configs/cascade_mask_rcnn_r50_fpn_1x.yml
浏览文件 @
cd8b44c5
...
...
@@ -86,14 +86,14 @@ MaskAssigner:
resolution
:
28
CascadeBBoxHead
:
head
:
FC6FC7Head
head
:
CascadeTwoFCHead
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
FC6FC7
Head
:
num_chan
:
1024
CascadeTwoFC
Head
:
mlp_dim
:
1024
LearningRate
:
base_lr
:
0.01
...
...
configs/cascade_rcnn_r50_fpn_1x.yml
浏览文件 @
cd8b44c5
...
...
@@ -77,14 +77,14 @@ CascadeBBoxAssigner:
fg_fraction
:
0.25
CascadeBBoxHead
:
head
:
FC6FC7
Head
head
:
CascadeTwoFC
Head
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
FC6FC7
Head
:
num_chan
:
1024
CascadeTwoFC
Head
:
mlp_dim
:
1024
LearningRate
:
base_lr
:
0.02
...
...
configs/dcn/cascade_rcnn_dcn_r101_vd_fpn_1x.yml
浏览文件 @
cd8b44c5
...
...
@@ -79,14 +79,14 @@ CascadeBBoxAssigner:
fg_fraction
:
0.25
CascadeBBoxHead
:
head
:
FC6FC7
Head
head
:
CascadeTwoFC
Head
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
FC6FC7
Head
:
num_chan
:
1024
CascadeTwoFC
Head
:
mlp_dim
:
1024
LearningRate
:
base_lr
:
0.02
...
...
configs/dcn/cascade_rcnn_dcn_r50_fpn_1x.yml
浏览文件 @
cd8b44c5
...
...
@@ -79,14 +79,14 @@ CascadeBBoxAssigner:
fg_fraction
:
0.25
CascadeBBoxHead
:
head
:
FC6FC7
Head
head
:
CascadeTwoFC
Head
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
FC6FC7
Head
:
num_chan
:
1024
CascadeTwoFC
Head
:
mlp_dim
:
1024
LearningRate
:
base_lr
:
0.02
...
...
configs/dcn/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.yml
浏览文件 @
cd8b44c5
...
...
@@ -81,14 +81,14 @@ CascadeBBoxAssigner:
fg_fraction
:
0.25
CascadeBBoxHead
:
head
:
FC6FC7
Head
head
:
CascadeTwoFC
Head
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
FC6FC7
Head
:
num_chan
:
1024
CascadeTwoFC
Head
:
mlp_dim
:
1024
LearningRate
:
base_lr
:
0.02
...
...
configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x.yml
0 → 100644
浏览文件 @
cd8b44c5
architecture
:
CascadeMaskRCNN
train_feed
:
MaskRCNNTrainFeed
eval_feed
:
MaskRCNNEvalFeed
test_feed
:
MaskRCNNTestFeed
max_iters
:
180000
snapshot_iter
:
10000
use_gpu
:
true
log_smooth_window
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights
:
output/cascade_mask_rcnn_r50_fpn_gn_2x/model_final/
metric
:
COCO
num_classes
:
81
CascadeMaskRCNN
:
backbone
:
ResNet
fpn
:
FPN
rpn_head
:
FPNRPNHead
roi_extractor
:
FPNRoIAlign
bbox_head
:
CascadeBBoxHead
bbox_assigner
:
CascadeBBoxAssigner
mask_head
:
MaskHead
mask_assigner
:
MaskAssigner
ResNet
:
depth
:
50
feature_maps
:
[
2
,
3
,
4
,
5
]
freeze_at
:
2
norm_type
:
affine_channel
FPN
:
max_level
:
6
min_level
:
2
num_chan
:
256
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
,
0.25
]
norm_type
:
gn
FPNRPNHead
:
anchor_generator
:
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
variance
:
[
1.0
,
1.0
,
1.0
,
1.0
]
anchor_start_size
:
32
max_level
:
6
min_level
:
2
num_chan
:
256
rpn_target_assign
:
rpn_batch_size_per_im
:
256
rpn_fg_fraction
:
0.5
rpn_negative_overlap
:
0.3
rpn_positive_overlap
:
0.7
rpn_straddle_thresh
:
0.0
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
2000
post_nms_top_n
:
2000
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
1000
post_nms_top_n
:
1000
FPNRoIAlign
:
canconical_level
:
4
canonical_size
:
224
max_level
:
5
min_level
:
2
sampling_ratio
:
2
box_resolution
:
7
mask_resolution
:
14
MaskHead
:
dilation
:
1
conv_dim
:
256
num_convs
:
4
resolution
:
28
norm_type
:
gn
CascadeBBoxAssigner
:
batch_size_per_im
:
512
bbox_reg_weights
:
[
10
,
20
,
30
]
bg_thresh_hi
:
[
0.5
,
0.6
,
0.7
]
bg_thresh_lo
:
[
0.0
,
0.0
,
0.0
]
fg_fraction
:
0.25
fg_thresh
:
[
0.5
,
0.6
,
0.7
]
MaskAssigner
:
resolution
:
28
CascadeBBoxHead
:
head
:
CascadeXConvNormHead
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
CascadeXConvNormHead
:
norm_type
:
gn
LearningRate
:
base_lr
:
0.02
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
120000
,
160000
]
-
!LinearWarmup
start_factor
:
0.3333333333333333
steps
:
500
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
MaskRCNNTrainFeed
:
batch_size
:
2
dataset
:
dataset_dir
:
dataset/coco
annotation
:
annotations/instances_train2017.json
image_dir
:
train2017
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
MaskRCNNEvalFeed
:
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
annotation
:
annotations/instances_val2017.json
image_dir
:
val2017
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
MaskRCNNTestFeed
:
batch_size
:
1
dataset
:
annotation
:
dataset/coco/annotations/instances_val2017.json
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
ppdet/modeling/ops.py
浏览文件 @
cd8b44c5
...
...
@@ -35,6 +35,7 @@ def ConvNorm(input,
norm_type
=
'affine_channel'
,
norm_groups
=
32
,
dilation
=
1
,
lr_scale
=
1
,
freeze_norm
=
False
,
act
=
None
,
norm_name
=
None
,
...
...
@@ -51,18 +52,20 @@ def ConvNorm(input,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
,
initializer
=
initializer
),
name
=
name
+
"_weights"
,
initializer
=
initializer
,
learning_rate
=
lr_scale
),
bias_attr
=
False
,
name
=
name
+
'.conv2d.output.1'
)
norm_lr
=
0.
if
freeze_norm
else
1.
pattr
=
ParamAttr
(
name
=
norm_name
+
'_scale'
,
learning_rate
=
norm_lr
,
learning_rate
=
norm_lr
*
lr_scale
,
regularizer
=
L2Decay
(
norm_decay
))
battr
=
ParamAttr
(
name
=
norm_name
+
'_offset'
,
learning_rate
=
norm_lr
,
learning_rate
=
norm_lr
*
lr_scale
,
regularizer
=
L2Decay
(
norm_decay
))
if
norm_type
in
[
'bn'
,
'sync_bn'
]:
...
...
ppdet/modeling/roi_heads/cascade_head.py
浏览文件 @
cd8b44c5
...
...
@@ -19,8 +19,10 @@ import paddle.fluid as fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
Normal
,
Xavier
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.fluid.initializer
import
MSRA
from
ppdet.modeling.ops
import
MultiClassNMS
from
ppdet.modeling.ops
import
ConvNorm
from
ppdet.core.workspace
import
register
__all__
=
[
'CascadeBBoxHead'
]
...
...
@@ -50,7 +52,7 @@ class CascadeBBoxHead(object):
def
get_output
(
self
,
roi_feat
,
cls_agnostic_bbox_reg
=
2
,
wb_scalar
=
2
.0
,
wb_scalar
=
1
.0
,
name
=
''
):
"""
Get bbox head output.
...
...
@@ -77,7 +79,7 @@ class CascadeBBoxHead(object):
learning_rate
=
wb_scalar
),
bias_attr
=
ParamAttr
(
name
=
'cls_score%s_b'
%
name
,
learning_rate
=
wb_scalar
,
learning_rate
=
wb_scalar
*
2
,
regularizer
=
L2Decay
(
0.
)))
bbox_pred
=
fluid
.
layers
.
fc
(
input
=
head_feat
,
size
=
4
*
cls_agnostic_bbox_reg
,
...
...
@@ -90,7 +92,7 @@ class CascadeBBoxHead(object):
learning_rate
=
wb_scalar
),
bias_attr
=
ParamAttr
(
name
=
'bbox_pred%s_b'
%
name
,
learning_rate
=
wb_scalar
,
learning_rate
=
wb_scalar
*
2
,
regularizer
=
L2Decay
(
0.
)))
return
cls_score
,
bbox_pred
...
...
@@ -177,7 +179,7 @@ class CascadeBBoxHead(object):
for
i
in
range
(
repreat_num
):
# cls score
if
i
<
2
:
cls_score
=
self
.
_head_share
(
cls_score
,
_
=
self
.
get_output
(
roi_feat_list
[
-
1
],
# roi_feat_3
name
=
'_'
+
str
(
i
+
1
)
if
i
>
0
else
''
)
else
:
...
...
@@ -216,66 +218,82 @@ class CascadeBBoxHead(object):
pred_result
=
self
.
nms
(
bboxes
=
box_out
,
scores
=
boxes_cls_prob_mean
)
return
{
"bbox"
:
pred_result
}
def
_head_share
(
self
,
roi_feat
,
wb_scalar
=
2.0
,
name
=
''
):
# FC6 FC7
fan
=
roi_feat
.
shape
[
1
]
*
roi_feat
.
shape
[
2
]
*
roi_feat
.
shape
[
3
]
fc6
=
fluid
.
layers
.
fc
(
input
=
roi_feat
,
size
=
self
.
head
.
num_chan
,
act
=
'relu'
,
name
=
'fc6'
+
name
,
param_attr
=
ParamAttr
(
name
=
'fc6%s_w'
%
name
,
initializer
=
Xavier
(
fan_out
=
fan
),
learning_rate
=
wb_scalar
,
),
bias_attr
=
ParamAttr
(
name
=
'fc6%s_b'
%
name
,
learning_rate
=
2.0
,
regularizer
=
L2Decay
(
0.
)))
fc7
=
fluid
.
layers
.
fc
(
input
=
fc6
,
size
=
self
.
head
.
num_chan
,
act
=
'relu'
,
name
=
'fc7'
+
name
,
param_attr
=
ParamAttr
(
name
=
'fc7%s_w'
%
name
,
initializer
=
Xavier
(),
learning_rate
=
wb_scalar
,
),
bias_attr
=
ParamAttr
(
name
=
'fc7%s_b'
%
name
,
learning_rate
=
2.0
,
regularizer
=
L2Decay
(
0.
)))
cls_score
=
fluid
.
layers
.
fc
(
input
=
fc7
,
size
=
self
.
num_classes
,
act
=
None
,
name
=
'cls_score'
+
name
,
@
register
class
CascadeXConvNormHead
(
object
):
"""
RCNN head with serveral convolution layers
Args:
conv_num (int): num of convolution layers for the rcnn head
conv_dim (int): num of filters for the conv layers
mlp_dim (int): num of filters for the fc layers
"""
__shared__
=
[
'norm_type'
,
'freeze_norm'
]
def
__init__
(
self
,
num_conv
=
4
,
conv_dim
=
256
,
mlp_dim
=
1024
,
norm_type
=
None
,
freeze_norm
=
False
):
super
(
CascadeXConvNormHead
,
self
).
__init__
()
self
.
conv_dim
=
conv_dim
self
.
mlp_dim
=
mlp_dim
self
.
num_conv
=
num_conv
self
.
norm_type
=
norm_type
self
.
freeze_norm
=
freeze_norm
def
__call__
(
self
,
roi_feat
,
wb_scalar
=
1.0
,
name
=
''
):
conv
=
roi_feat
fan
=
self
.
conv_dim
*
3
*
3
initializer
=
MSRA
(
uniform
=
False
,
fan_in
=
fan
)
for
i
in
range
(
self
.
num_conv
):
name
=
'bbox_head_conv'
+
str
(
i
)
conv
=
ConvNorm
(
conv
,
self
.
conv_dim
,
3
,
act
=
'relu'
,
initializer
=
initializer
,
norm_type
=
self
.
norm_type
,
freeze_norm
=
self
.
freeze_norm
,
lr_scale
=
wb_scalar
,
name
=
name
,
norm_name
=
name
)
fan
=
conv
.
shape
[
1
]
*
conv
.
shape
[
2
]
*
conv
.
shape
[
3
]
head_heat
=
fluid
.
layers
.
fc
(
input
=
conv
,
size
=
self
.
mlp_dim
,
act
=
'relu'
,
name
=
'fc6'
+
name
,
param_attr
=
ParamAttr
(
name
=
'cls_score%s_w'
%
name
,
initializer
=
Normal
(
loc
=
0.0
,
scale
=
0.01
),
learning_rate
=
wb_scalar
,
),
name
=
'fc6%s_w'
%
name
,
initializer
=
Xavier
(
fan_out
=
fan
),
learning_rate
=
wb_scalar
),
bias_attr
=
ParamAttr
(
name
=
'
cls_score
%s_b'
%
name
,
learning_rate
=
2.0
,
regularizer
=
L2Decay
(
0.
)
))
return
cls_score
name
=
'
fc6
%s_b'
%
name
,
regularizer
=
L2Decay
(
0.
)
,
learning_rate
=
wb_scalar
*
2
))
return
head_heat
@
register
class
FC6FC7
Head
(
object
):
class
CascadeTwoFC
Head
(
object
):
"""
Cascade RCNN head with two Fully Connected
layers
RCNN head with serveral convolution
layers
Args:
num_chan
(int): num of filters for the fc layers
mlp_dim
(int): num of filters for the fc layers
"""
def
__init__
(
self
,
num_chan
):
super
(
FC6FC7
Head
,
self
).
__init__
()
self
.
num_chan
=
num_chan
def
__init__
(
self
,
mlp_dim
):
super
(
CascadeTwoFC
Head
,
self
).
__init__
()
self
.
mlp_dim
=
mlp_dim
def
__call__
(
self
,
roi_feat
,
wb_scalar
=
1.0
,
name
=
''
):
fan
=
roi_feat
.
shape
[
1
]
*
roi_feat
.
shape
[
2
]
*
roi_feat
.
shape
[
3
]
fc6
=
fluid
.
layers
.
fc
(
input
=
roi_feat
,
size
=
self
.
num_chan
,
size
=
self
.
mlp_dim
,
act
=
'relu'
,
name
=
'fc6'
+
name
,
param_attr
=
ParamAttr
(
...
...
@@ -284,10 +302,10 @@ class FC6FC7Head(object):
learning_rate
=
wb_scalar
),
bias_attr
=
ParamAttr
(
name
=
'fc6%s_b'
%
name
,
learning_rate
=
wb_scalar
,
learning_rate
=
wb_scalar
*
2
,
regularizer
=
L2Decay
(
0.
)))
head_feat
=
fluid
.
layers
.
fc
(
input
=
fc6
,
size
=
self
.
num_chan
,
size
=
self
.
mlp_dim
,
act
=
'relu'
,
name
=
'fc7'
+
name
,
param_attr
=
ParamAttr
(
...
...
@@ -296,6 +314,6 @@ class FC6FC7Head(object):
learning_rate
=
wb_scalar
),
bias_attr
=
ParamAttr
(
name
=
'fc7%s_b'
%
name
,
learning_rate
=
wb_scalar
,
learning_rate
=
wb_scalar
*
2
,
regularizer
=
L2Decay
(
0.
)))
return
head_feat
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录