Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
cc95a751
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cc95a751
编写于
5月 06, 2019
作者:
J
jerrywgz
提交者:
GitHub
5月 06, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix distribute fpn proposals, test=develop (#16152)
* fix distribute fpn proposals, test=develop
上级
9ec4615d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
81 addition
and
70 deletion
+81
-70
paddle/fluid/operators/detection/bbox_util.h
paddle/fluid/operators/detection/bbox_util.h
+26
-0
paddle/fluid/operators/detection/distribute_fpn_proposals_op.cc
.../fluid/operators/detection/distribute_fpn_proposals_op.cc
+2
-2
paddle/fluid/operators/detection/distribute_fpn_proposals_op.cu
.../fluid/operators/detection/distribute_fpn_proposals_op.cu
+42
-61
paddle/fluid/operators/detection/distribute_fpn_proposals_op.h
...e/fluid/operators/detection/distribute_fpn_proposals_op.h
+3
-3
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+1
-1
python/paddle/fluid/tests/unittests/test_distribute_fpn_proposals_op.py
...fluid/tests/unittests/test_distribute_fpn_proposals_op.py
+7
-3
未找到文件。
paddle/fluid/operators/detection/bbox_util.h
浏览文件 @
cc95a751
...
...
@@ -15,11 +15,37 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
operators
{
struct
RangeInitFunctor
{
int
start_
;
int
delta_
;
int
*
out_
;
HOSTDEVICE
void
operator
()(
size_t
i
)
{
out_
[
i
]
=
start_
+
i
*
delta_
;
}
};
template
<
typename
T
>
inline
HOSTDEVICE
T
RoIArea
(
const
T
*
box
,
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
/*
* transform that computes target bounding-box regression deltas
* given proposal boxes and ground-truth boxes.
...
...
paddle/fluid/operators/detection/distribute_fpn_proposals_op.cc
浏览文件 @
cc95a751
...
...
@@ -40,14 +40,14 @@ class DistributeFpnProposalsOp : public framework::OperatorWithKernel {
outs_dims
.
push_back
(
out_dim
);
}
ctx
->
SetOutputsDim
(
"MultiFpnRois"
,
outs_dims
);
ctx
->
SetOutputDim
(
"RestoreIndex"
,
{
1
,
-
1
});
ctx
->
SetOutputDim
(
"RestoreIndex"
,
{
-
1
,
1
});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"FpnRois"
));
return
framework
::
OpKernelType
(
data_type
,
platform
::
CPUPlace
());
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
...
...
paddle/fluid/operators/detection/distribute_fpn_proposals_op.cu
浏览文件 @
cc95a751
...
...
@@ -15,8 +15,10 @@ limitations under the License. */
#include <paddle/fluid/memory/allocation/allocator.h>
#include "cub/cub.cuh"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/detection/distribute_fpn_proposals_op.h"
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/for_range.h"
...
...
@@ -26,7 +28,7 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
static
constexpr
int
kNumCUDAThreads
=
512
;
static
constexpr
int
kNumCUDAThreads
=
64
;
static
constexpr
int
kNumMaxinumNumBlocks
=
4096
;
#define CUDA_1D_KERNEL_LOOP(i, n) \
...
...
@@ -35,47 +37,13 @@ static constexpr int kNumMaxinumNumBlocks = 4096;
int
const
BBoxSize
=
4
;
struct
RangeInitFunctor
{
int
start_
;
int
delta_
;
int
*
out_
;
__device__
void
operator
()(
size_t
i
)
{
out_
[
i
]
=
start_
+
i
*
delta_
;
}
};
static
inline
int
NumBlocks
(
const
int
N
)
{
return
std
::
min
((
N
+
kNumCUDAThreads
-
1
)
/
kNumCUDAThreads
,
kNumMaxinumNumBlocks
);
}
static
inline
void
TransLoD
(
const
int
*
length_lod
,
const
int
lod_size
,
int
*
offset_lod
)
{
int
offset
=
0
;
for
(
int
i
=
0
;
i
<
lod_size
;
++
i
)
{
offset_lod
[
i
]
=
offset
;
offset
+=
length_lod
[
i
];
}
}
template
<
typename
T
>
static
__device__
inline
T
RoIArea
(
const
T
*
box
,
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
static
__global__
void
GPUDistFpnProposalsHelper
(
__global__
void
GPUDistFpnProposalsHelper
(
const
int
nthreads
,
const
T
*
rois
,
const
int
lod_size
,
const
int
refer_level
,
const
int
refer_scale
,
const
int
max_level
,
const
int
min_level
,
int
*
roi_batch_id_data
,
int
*
sub_lod_list
,
...
...
@@ -86,12 +54,13 @@ static __global__ void GPUDistFpnProposalsHelper(
// get the target level of current rois
T
roi_area
=
RoIArea
(
offset_roi
,
false
);
T
roi_scale
=
sqrt
(
roi_area
);
int
tgt_lvl
=
floor
(
log2
(
roi_scale
/
refer_scale
)
+
refer_level
);
int
tgt_lvl
=
floor
(
log2
(
roi_scale
/
static_cast
<
T
>
(
refer_scale
)
+
(
T
)
1e-6
)
+
refer_level
);
tgt_lvl
=
min
(
max_level
,
max
(
tgt_lvl
,
min_level
));
target_lvls
[
i
]
=
tgt_lvl
;
// compute number of rois in the same batch and same target level
platform
::
CudaAtomicAdd
(
sub_lod_list
+
tgt_lvl
*
lod_size
+
roi_batch_ind
,
1
);
platform
::
CudaAtomicAdd
(
sub_lod_list
+
(
tgt_lvl
-
min_level
)
*
lod_size
+
roi_batch_ind
,
1
);
}
}
...
...
@@ -138,18 +107,22 @@ class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
Tensor
sub_lod_list
;
sub_lod_list
.
Resize
({
num_level
,
lod_size
});
int
*
sub_lod_list_data
=
sub_lod_list
.
mutable_data
<
int
>
(
dev_ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
int
>
set_zero
;
set_zero
(
dev_ctx
,
&
sub_lod_list
,
static_cast
<
int
>
(
0
));
Tensor
target_lvls
;
target_lvls
.
Resize
({
roi_num
});
int
*
target_lvls_data
=
target_lvls
.
mutable_data
<
int
>
(
dev_ctx
.
GetPlace
());
int
blocks
=
NumBlocks
(
roi_num
);
int
dist_
blocks
=
NumBlocks
(
roi_num
);
int
threads
=
kNumCUDAThreads
;
// get target levels and sub_lod list
GPUDistFpnProposalsHelper
<
T
><<<
blocks
,
threads
>>>
(
GPUDistFpnProposalsHelper
<
T
><<<
dist_
blocks
,
threads
>>>
(
roi_num
,
fpn_rois
->
data
<
T
>
(),
lod_size
,
refer_level
,
refer_scale
,
max_level
,
min_level
,
roi_batch_id_list_gpu
.
data
<
int
>
(),
sub_lod_list_data
,
target_lvls_data
);
dev_ctx
.
Wait
();
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_ctx
.
GetPlace
());
Tensor
index_in_t
;
int
*
idx_in
=
index_in_t
.
mutable_data
<
int
>
({
roi_num
},
dev_ctx
.
GetPlace
());
...
...
@@ -163,46 +136,54 @@ class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
// Determine temporary device storage requirements
size_t
temp_storage_bytes
=
0
;
cub
::
DeviceRadixSort
::
SortPairs
Descending
<
int
,
int
>
(
nullptr
,
temp_storage_bytes
,
target_lvls_data
,
keys_out
,
idx_in
,
idx_out
,
roi_num
);
cub
::
DeviceRadixSort
::
SortPairs
<
int
,
int
>
(
nullptr
,
temp_storage_bytes
,
target_lvls_data
,
keys_out
,
idx_in
,
idx_out
,
roi_num
);
// Allocate temporary storage
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_ctx
.
GetPlace
());
auto
d_temp_storage
=
memory
::
Alloc
(
place
,
temp_storage_bytes
,
memory
::
Allocator
::
kScratchpad
);
// Run sorting operation
// sort target level to get corresponding index
cub
::
DeviceRadixSort
::
SortPairs
Descending
<
int
,
int
>
(
cub
::
DeviceRadixSort
::
SortPairs
<
int
,
int
>
(
d_temp_storage
->
ptr
(),
temp_storage_bytes
,
target_lvls_data
,
keys_out
,
idx_in
,
idx_out
,
roi_num
);
int
*
restore_idx_data
=
restore_index
->
mutable_data
<
int
>
({
roi_num
,
1
},
dev_ctx
.
GetPlace
());
// sort current index to get restore index
cub
::
DeviceRadixSort
::
SortPairs
Descending
<
int
,
int
>
(
cub
::
DeviceRadixSort
::
SortPairs
<
int
,
int
>
(
d_temp_storage
->
ptr
(),
temp_storage_bytes
,
idx_out
,
keys_out
,
idx_in
,
restore_idx_data
,
roi_num
);
Tensor
offset_lod
;
int
*
offset_lod_data
=
offset_lod
.
mutable_data
<
int
>
({
lod_size
+
1
},
dev_ctx
.
GetPlace
());
int
start
=
0
;
for
(
int
i
=
0
;
i
<
num_level
;
++
i
)
{
Tensor
sub_lod
=
sub_lod_list
.
Slice
(
i
,
i
+
1
);
int
*
sub_lod_data
=
sub_lod
.
data
<
int
>
();
// transfer length-based lod to offset-based lod
TransLoD
(
sub_lod_data
,
lod_size
+
1
,
offset_lod_data
);
int
sub_rois_num
=
offset_lod_data
[
lod_size
];
Tensor
sub_idx
=
index_out_t
.
Slice
(
0
,
sub_rois_num
);
multi_fpn_rois
[
i
]
->
mutable_data
<
T
>
({
sub_rois_num
,
kBoxDim
},
dev_ctx
.
GetPlace
());
std
::
vector
<
size_t
>
offset
(
1
,
0
);
std
::
vector
<
int
>
sub_lod_cpu
(
lod_size
);
memory
::
Copy
(
platform
::
CPUPlace
(),
sub_lod_cpu
.
data
(),
place
,
sub_lod_data
,
sizeof
(
int
)
*
lod_size
,
dev_ctx
.
stream
());
dev_ctx
.
Wait
();
for
(
int
j
=
0
;
j
<
lod_size
;
++
j
)
{
offset
.
emplace_back
(
offset
.
back
()
+
sub_lod_cpu
[
j
]);
}
GPUGather
<
T
>
(
dev_ctx
,
*
fpn_rois
,
sub_idx
,
multi_fpn_rois
[
i
]);
int
sub_rois_num
=
offset
.
back
();
int
end
=
start
+
sub_rois_num
;
if
(
end
>
start
)
{
Tensor
sub_idx
=
index_out_t
.
Slice
(
start
,
end
);
start
=
end
;
multi_fpn_rois
[
i
]
->
mutable_data
<
T
>
({
sub_rois_num
,
kBoxDim
},
dev_ctx
.
GetPlace
());
GPUGather
<
T
>
(
dev_ctx
,
*
fpn_rois
,
sub_idx
,
multi_fpn_rois
[
i
]);
}
else
{
multi_fpn_rois
[
i
]
->
mutable_data
<
T
>
({
sub_rois_num
,
kBoxDim
},
dev_ctx
.
GetPlace
());
}
framework
::
LoD
lod
;
std
::
vector
<
size_t
>
offset
;
memory
::
Copy
(
platform
::
CPUPlace
(),
offset
.
data
(),
place
,
offset_lod_data
,
sizeof
(
int
)
*
(
lod_size
+
1
),
0
);
lod
.
emplace_back
(
offset
);
multi_fpn_rois
[
i
]
->
set_lod
(
lod
);
}
...
...
paddle/fluid/operators/detection/distribute_fpn_proposals_op.h
浏览文件 @
cc95a751
...
...
@@ -83,8 +83,8 @@ class DistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
for
(
int
j
=
0
;
j
<
fpn_rois_slice
.
dims
()[
0
];
++
j
)
{
// get the target level of current rois
T
roi_scale
=
std
::
sqrt
(
BBoxArea
(
rois_data
,
false
));
int
tgt_lvl
=
std
::
floor
(
std
::
log2
(
roi_scale
/
refer_scale
)
+
refer_level
);
int
tgt_lvl
=
std
::
floor
(
std
::
log2
(
roi_scale
/
refer_scale
+
(
T
)
1e-6
)
+
refer_level
);
tgt_lvl
=
std
::
min
(
max_level
,
std
::
max
(
tgt_lvl
,
min_level
));
target_level
.
push_back
(
tgt_lvl
);
num_rois_level
[
tgt_lvl
-
min_level
]
++
;
...
...
@@ -107,7 +107,7 @@ class DistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
num_rois_level_integral
[
i
+
1
]
=
num_rois_level_integral
[
i
]
+
num_rois_level
[
i
];
}
restore_index
->
mutable_data
<
int
>
({
1
,
fpn_rois_num
},
context
.
GetPlace
());
restore_index
->
mutable_data
<
int
>
({
fpn_rois_num
,
1
},
context
.
GetPlace
());
int
*
restore_index_data
=
restore_index
->
data
<
int
>
();
std
::
vector
<
int
>
restore_index_inter
(
fpn_rois_num
,
-
1
);
// distribute the rois into different fpn level by target level
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
cc95a751
...
...
@@ -2383,7 +2383,7 @@ def distribute_fpn_proposals(fpn_rois,
"""
helper
=
LayerHelper
(
'distribute_fpn_proposals'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
helper
.
input_dtype
(
'fpn_rois'
)
num_lvl
=
max_level
-
min_level
+
1
multi_rois
=
[
helper
.
create_variable_for_type_inference
(
dtype
)
for
i
in
range
(
num_lvl
)
...
...
python/paddle/fluid/tests/unittests/test_distribute_fpn_proposals_op.py
浏览文件 @
cc95a751
...
...
@@ -37,7 +37,7 @@ class TestDistributeFPNProposalsOp(OpTest):
for
i
in
range
(
len
(
self
.
rois_fpn
))]
self
.
outputs
=
{
'MultiFpnRois'
:
output
,
'RestoreIndex'
:
self
.
rois_idx_restore
'RestoreIndex'
:
self
.
rois_idx_restore
.
reshape
(
-
1
,
1
)
}
def
init_test_case
(
self
):
...
...
@@ -63,10 +63,10 @@ class TestDistributeFPNProposalsOp(OpTest):
return
target_lvls
def
get_sub_lod
(
self
,
sub_lvl
):
sub_lod
=
[]
sub_lod
=
[
0
,
0
]
max_batch_id
=
sub_lvl
[
-
1
]
for
i
in
range
(
max_batch_id
.
astype
(
np
.
int32
)
+
1
):
sub_lod
.
append
(
np
.
where
(
sub_lvl
==
i
)[
0
].
size
)
sub_lod
[
i
]
=
np
.
where
(
sub_lvl
==
i
)[
0
].
size
return
sub_lod
def
add_multilevel_roi
(
self
,
rois
,
target_lvls
,
lvl_min
,
lvl_max
):
...
...
@@ -115,3 +115,7 @@ class TestDistributeFPNProposalsOp(OpTest):
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录