提交 cc534530 编写于 作者: J jerrywgz

add comment and refine code, test=develop

上级 7d0c5faf
...@@ -318,7 +318,7 @@ paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None ...@@ -318,7 +318,7 @@ paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None)) paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None)) paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'nms_threshold', 'keep_top_k', 'normalized', 'nms_eta', 'background_label'], varargs=None, keywords=None, defaults=(True, 1.0, 0)) paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'nms_threshold', 'keep_top_k', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)) paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)) paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)) paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
......
...@@ -93,25 +93,5 @@ void BboxOverlaps(const framework::Tensor& r_boxes, ...@@ -93,25 +93,5 @@ void BboxOverlaps(const framework::Tensor& r_boxes,
} }
} }
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
const framework::Tensor& items, const int class_id,
framework::Tensor* one_class_item) {
T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
const T* items_data = items.data<T>();
const int64_t num_item = items.dims()[0];
const int class_num = items.dims()[1];
int item_size = 1;
if (items.dims().size() == 3) {
item_size = items.dims()[2];
}
for (int i = 0; i < num_item; ++i) {
for (int j = 0; j < item_size; ++j) {
item_data[i * item_size + j] =
items_data[i * class_num * item_size + class_id * item_size + j];
}
}
}
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...@@ -10,7 +13,6 @@ limitations under the License. */ ...@@ -10,7 +13,6 @@ limitations under the License. */
#include <glog/logging.h> #include <glog/logging.h>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/detection/poly_util.h" #include "paddle/fluid/operators/detection/poly_util.h"
namespace paddle { namespace paddle {
...@@ -136,12 +138,9 @@ static inline T JaccardOverlap(const T* box1, const T* box2, ...@@ -136,12 +138,9 @@ static inline T JaccardOverlap(const T* box1, const T* box2,
const T inter_ymin = std::max(box1[1], box2[1]); const T inter_ymin = std::max(box1[1], box2[1]);
const T inter_xmax = std::min(box1[2], box2[2]); const T inter_xmax = std::min(box1[2], box2[2]);
const T inter_ymax = std::min(box1[3], box2[3]); const T inter_ymax = std::min(box1[3], box2[3]);
T inter_w = inter_xmax - inter_xmin; T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
T inter_h = inter_ymax - inter_ymin; T inter_w = inter_xmax - inter_xmin + norm;
if (!normalized) { T inter_h = inter_ymax - inter_ymin + norm;
inter_w += 1;
inter_h += 1;
}
const T inter_area = inter_w * inter_h; const T inter_area = inter_w * inter_h;
const T bbox1_area = BBoxArea<T>(box1, normalized); const T bbox1_area = BBoxArea<T>(box1, normalized);
const T bbox2_area = BBoxArea<T>(box2, normalized); const T bbox2_area = BBoxArea<T>(box2, normalized);
...@@ -164,6 +163,25 @@ T PolyIoU(const T* box1, const T* box2, const size_t box_size, ...@@ -164,6 +163,25 @@ T PolyIoU(const T* box1, const T* box2, const size_t box_size,
} }
} }
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
const framework::Tensor& items, const int class_id,
framework::Tensor* one_class_item) {
T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
const T* items_data = items.data<T>();
const int64_t num_item = items.dims()[0];
const int class_num = items.dims()[1];
int item_size = 1;
if (items.dims().size() == 3) {
item_size = items.dims()[2];
}
for (int i = 0; i < num_item; ++i) {
std::memcpy(item_data + i * item_size,
items_data + i * class_num * item_size + class_id * item_size,
sizeof(T) * item_size);
}
}
template <typename T> template <typename T>
class MultiClassNMSKernel : public framework::OpKernel<T> { class MultiClassNMSKernel : public framework::OpKernel<T> {
public: public:
...@@ -237,33 +255,26 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -237,33 +255,26 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>(); auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
int num_det = 0; int num_det = 0;
int64_t box_num = 0, class_num = 0, predict_dim = 0;
if (scores_size == 3) { int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
class_num = scores.dims()[0]; Tensor bbox_slice, score_slice;
predict_dim = scores.dims()[1]; for (int64_t c = 0; c < class_num; ++c) {
for (int64_t c = 0; c < class_num; ++c) { if (c == background_label) continue;
if (c == background_label) continue; if (scores_size == 3) {
Tensor score = scores.Slice(c, c + 1); score_slice = scores.Slice(c, c + 1);
NMSFast(bboxes, score, score_threshold, nms_threshold, nms_eta, bbox_slice = bboxes;
nms_top_k, &((*indices)[c]), normalized); } else {
num_det += (*indices)[c].size(); score_slice.Resize({scores.dims()[0], 1});
bbox_slice.Resize({scores.dims()[0], 4});
SliceOneClass<T>(dev_ctx, scores, c, &score_slice);
SliceOneClass<T>(dev_ctx, bboxes, c, &bbox_slice);
} }
} else { NMSFast(bbox_slice, score_slice, score_threshold, nms_threshold, nms_eta,
box_num = scores.dims()[0]; nms_top_k, &((*indices)[c]), normalized);
class_num = scores.dims()[1]; if (scores_size == 2) {
Tensor score;
score.Resize({box_num, 1});
Tensor bbox;
bbox.Resize({box_num, 4});
for (int64_t c = 0; c < class_num; ++c) {
if (c == background_label) continue;
SliceOneClass<T>(dev_ctx, scores, c, &score);
SliceOneClass<T>(dev_ctx, bboxes, c, &bbox);
NMSFast(bbox, score, score_threshold, nms_threshold, nms_eta, nms_top_k,
&((*indices)[c]), normalized);
std::stable_sort((*indices)[c].begin(), (*indices)[c].end()); std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
num_det += (*indices)[c].size();
} }
num_det += (*indices)[c].size();
} }
*num_nmsed_out = num_det; *num_nmsed_out = num_det;
...@@ -274,12 +285,11 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -274,12 +285,11 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
for (const auto& it : *indices) { for (const auto& it : *indices) {
int label = it.first; int label = it.first;
if (scores_size == 3) { if (scores_size == 3) {
sdata = scores_data + label * predict_dim; sdata = scores_data + label * scores.dims()[1];
} else { } else {
Tensor score; score_slice.Resize({scores.dims()[0], 1});
score.Resize({box_num, 1}); SliceOneClass<T>(dev_ctx, scores, label, &score_slice);
SliceOneClass<T>(dev_ctx, scores, label, &score); sdata = score_slice.data<T>();
sdata = score.data<T>();
} }
const std::vector<int>& label_indices = it.second; const std::vector<int>& label_indices = it.second;
for (size_t j = 0; j < label_indices.size(); ++j) { for (size_t j = 0; j < label_indices.size(); ++j) {
...@@ -362,43 +372,33 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -362,43 +372,33 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
auto* outs = ctx.Output<LoDTensor>("Out"); auto* outs = ctx.Output<LoDTensor>("Out");
auto score_dims = scores->dims(); auto score_dims = scores->dims();
int64_t class_num = score_dims[1]; auto score_size = score_dims.size();
auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>(); auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
std::vector<std::map<int, std::vector<int>>> all_indices; std::vector<std::map<int, std::vector<int>>> all_indices;
std::vector<size_t> batch_starts = {0}; std::vector<size_t> batch_starts = {0};
int64_t batch_size = score_dims[0]; int64_t batch_size = score_dims[0];
int64_t predict_dim = 0;
int64_t box_dim = boxes->dims()[2]; int64_t box_dim = boxes->dims()[2];
int64_t out_dim = box_dim + 2; int64_t out_dim = box_dim + 2;
int num_nmsed_out = 0; int num_nmsed_out = 0;
if (score_dims.size() == 3) { Tensor boxes_slice, scores_slice;
predict_dim = score_dims[2]; int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
for (int64_t i = 0; i < batch_size; ++i) { for (int i = 0; i < n; ++i) {
Tensor ins_score = scores->Slice(i, i + 1); if (score_size == 3) {
ins_score.Resize({class_num, predict_dim}); scores_slice = scores->Slice(i, i + 1);
scores_slice.Resize({score_dims[1], score_dims[2]});
Tensor ins_boxes = boxes->Slice(i, i + 1); boxes_slice = boxes->Slice(i, i + 1);
ins_boxes.Resize({predict_dim, box_dim}); boxes_slice.Resize({score_dims[2], box_dim});
} else {
std::map<int, std::vector<int>> indices; auto boxes_lod = boxes->lod().back();
MultiClassNMS(ctx, ins_score, ins_boxes, score_dims.size(), &indices, scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
&num_nmsed_out); boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
all_indices.push_back(indices);
batch_starts.push_back(batch_starts.back() + num_nmsed_out);
}
} else {
auto boxes_lod = boxes->lod().back();
int64_t n = static_cast<int64_t>(boxes_lod.size() - 1);
for (int i = 0; i < n; ++i) {
Tensor boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
Tensor scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
std::map<int, std::vector<int>> indices;
MultiClassNMS(ctx, scores_slice, boxes_slice, score_dims.size(),
&indices, &num_nmsed_out);
all_indices.push_back(indices);
batch_starts.push_back(batch_starts.back() + num_nmsed_out);
} }
std::map<int, std::vector<int>> indices;
MultiClassNMS(ctx, scores_slice, boxes_slice, score_size, &indices,
&num_nmsed_out);
all_indices.push_back(indices);
batch_starts.push_back(batch_starts.back() + num_nmsed_out);
} }
int num_kept = batch_starts.back(); int num_kept = batch_starts.back();
...@@ -408,35 +408,23 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -408,35 +408,23 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
batch_starts = {0, 1}; batch_starts = {0, 1};
} else { } else {
outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace()); outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
if (score_dims.size() == 3) { for (int i = 0; i < n; ++i) {
for (int64_t i = 0; i < batch_size; ++i) { if (score_size == 3) {
Tensor ins_score = scores->Slice(i, i + 1); scores_slice = scores->Slice(i, i + 1);
ins_score.Resize({class_num, predict_dim}); boxes_slice = boxes->Slice(i, i + 1);
scores_slice.Resize({score_dims[1], score_dims[2]});
Tensor ins_boxes = boxes->Slice(i, i + 1); boxes_slice.Resize({score_dims[2], box_dim});
ins_boxes.Resize({predict_dim, box_dim}); } else {
auto boxes_lod = boxes->lod().back();
int64_t s = batch_starts[i]; scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
int64_t e = batch_starts[i + 1]; boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
if (e > s) {
Tensor out = outs->Slice(s, e);
MultiClassOutput(dev_ctx, ins_score, ins_boxes, all_indices[i],
score_dims.size(), &out);
}
} }
} else { int64_t s = batch_starts[i];
auto boxes_lod = boxes->lod().back(); int64_t e = batch_starts[i + 1];
int64_t n = static_cast<int64_t>(boxes_lod.size() - 1); if (e > s) {
for (int i = 0; i < n; ++i) { Tensor out = outs->Slice(s, e);
Tensor boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]); MultiClassOutput(dev_ctx, scores_slice, boxes_slice, all_indices[i],
Tensor scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]); score_dims.size(), &out);
int64_t s = batch_starts[i];
int64_t e = batch_starts[i + 1];
if (e > s) {
Tensor out = outs->Slice(s, e);
MultiClassOutput(dev_ctx, scores_slice, boxes_slice, all_indices[i],
score_dims.size(), &out);
}
} }
} }
} }
...@@ -458,17 +446,18 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -458,17 +446,18 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
"predicted locations of M bounding bboxes, N is the batch size. " "predicted locations of M bounding bboxes, N is the batch size. "
"Each bounding box has four coordinate values and the layout is " "Each bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax], when box size equals to 4." "[xmin, ymin, xmax, ymax], when box size equals to 4."
"2. (LoDTensor) A 3-D Tensor with shape [N, M, 4]" "2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
"N is the number of boxes, M is the class number"); "M is the number of bounding boxes, C is the class number");
AddInput("Scores", AddInput("Scores",
"Two types of scores are supported:" "Two types of scores are supported:"
"1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the " "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"predicted confidence predictions. N is the batch size, C is the " "predicted confidence predictions. N is the batch size, C is the "
"class number, M is number of bounding boxes. For each category " "class number, M is number of bounding boxes. For each category "
"there are total M scores which corresponding M bounding boxes. " "there are total M scores which corresponding M bounding boxes. "
" Please note, M is equal to the 1st dimension of BBoxes. " " Please note, M is equal to the 2nd dimension of BBoxes. "
"2. (LoDTensor) A 2-D LoDTensor with shape" "2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
"[N, num_class]. N is the number of bbox"); "M is the number of bbox, C is the class number. In this case, "
"Input BBoxes should be the second case with shape [M, C, 4].");
AddAttr<int>( AddAttr<int>(
"background_label", "background_label",
"(int, defalut: 0) " "(int, defalut: 0) "
...@@ -528,8 +517,8 @@ independently for each class. The outputs is a 2-D LoDTenosr, for each ...@@ -528,8 +517,8 @@ independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0, of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. If there is no detected boxes means there is no detected bbox for this image. If there is no detected boxes
for all images, all the elements in LoD are 0, and the Out only contains one for all images, all the elements in LoD are set to {0,1}, and the Out only
value which is -1. contains one value which is -1.
)DOC"); )DOC");
} }
}; };
......
...@@ -1821,8 +1821,88 @@ def multiclass_nms(bboxes, ...@@ -1821,8 +1821,88 @@ def multiclass_nms(bboxes,
keep_top_k, keep_top_k,
normalized=True, normalized=True,
nms_eta=1., nms_eta=1.,
background_label=0): background_label=0,
name=None):
""" """
**Multiclass NMS**
This operator is to do multi-class non maximum suppression (NMS) on
boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
Args:
bboxes (Variable): Two types of bboxes are supported:
1. (Tensor) A 3-D Tensor with shape
[N, M, 4 or 8 16 24 32] represents the
predicted locations of M bounding bboxes,
N is the batch size. Each bounding box has four
coordinate values and the layout is
[xmin, ymin, xmax, ymax], when box size equals to 4.
2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
M is the number of bounding boxes, C is the
class number
scores (Variable): Two types of scores are supported:
1. (Tensor) A 3-D Tensor with shape [N, C, M]
represents the predicted confidence predictions.
N is the batch size, C is the class number, M is
number of bounding boxes. For each category there
are total M scores which corresponding M bounding
boxes. Please note, M is equal to the 2nd dimension
of BBoxes.
2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
M is the number of bbox, C is the class number.
In this case, input BBoxes should be the second
case with shape [M, C, 4].
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all
categories will be considered. Default: 0
score_threshold (float): Threshold to filter out bounding boxes with
low confidence score. If not provided,
consider all boxes.
nms_top_k (int): Maximum number of detections to be kept according to
the confidences aftern the filtering detections based
on score_threshold.
nms_threshold (float): The threshold to be used in NMS. Default: 0.3
nms_eta (float): The threshold to be used in NMS. Default: 1.0
keep_top_k (int): Number of total bboxes to be kept per image after NMS
step. -1 means keeping all bboxes after NMS step.
normalized (bool): Whether detections are normalized. Default: True
name(str): Name of the multiclass nms op. Default: None.
Returns:
Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
or A 2-D LoDTensor with shape [No, 10] represents the detections.
Each row has 10 values:
[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
total number of detections. If there is no detected boxes for all
images, lod will be set to {0, 1} and Out only contains one value
which is -1.
Examples:
.. code-block:: python
boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
dtype='float32', lod_level=1)
scores = fluid.layers.data(name='scores', shape=[81],
dtype='float32', lod_level=1)
out = fluid.layers.multiclass_nms(bboxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False)
""" """
helper = LayerHelper('multiclass_nms', **locals()) helper = LayerHelper('multiclass_nms', **locals())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册