Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
cc220eec
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
cc220eec
编写于
10月 12, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add forward computation of crf operator.
上级
cbcf11d9
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
231 addition
and
49 deletion
+231
-49
paddle/framework/tensor.h
paddle/framework/tensor.h
+7
-4
paddle/framework/tensor_impl.h
paddle/framework/tensor_impl.h
+4
-3
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+1
-1
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+192
-22
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+15
-11
paddle/operators/softmax_with_cross_entropy_op.cc
paddle/operators/softmax_with_cross_entropy_op.cc
+9
-5
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
+3
-3
未找到文件。
paddle/framework/tensor.h
浏览文件 @
cc220eec
...
...
@@ -114,16 +114,19 @@ class Tensor {
const
platform
::
DeviceContext
&
ctx
);
/**
* @brief
Return the slice of the
tensor.
* @brief
Return a sub-tensor of the given
tensor.
*
* @param[in] begin_idx The begin index of the slice.
* @param[in] end_idx The end index of the slice.
* @param[in] begin_idx The index of the start row(inclusive) to slice.
* The index number begins from 0.
* @param[in] end_idx The index of the end row(exclusive) to slice.
* The index number begins from 0.
*/
template
<
typename
T
>
inline
Tensor
Slice
(
const
int
&
begin_idx
,
const
int
&
end_idx
)
const
;
platform
::
Place
place
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
"Tensor get place() must contains holder"
);
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
"A holder must exist when calling the method place()."
);
return
holder_
->
place
();
}
...
...
paddle/framework/tensor_impl.h
浏览文件 @
cc220eec
...
...
@@ -168,10 +168,11 @@ inline void Tensor::CopyFromVector(const std::vector<T>& src,
template
<
typename
T
>
inline
Tensor
Tensor
::
Slice
(
const
int
&
begin_idx
,
const
int
&
end_idx
)
const
{
check_memory_size
<
T
>
();
PADDLE_ENFORCE_GE
(
begin_idx
,
0
,
"Slice begin index is less than zero."
);
PADDLE_ENFORCE_LE
(
end_idx
,
dims_
[
0
],
"Slice end index is out of bound."
);
PADDLE_ENFORCE_GE
(
begin_idx
,
0
,
"The start row index must be greater than 0."
);
PADDLE_ENFORCE_LE
(
end_idx
,
dims_
[
0
],
"The end row index is out of bound."
);
PADDLE_ENFORCE_LT
(
begin_idx
,
end_idx
,
"
Begin index must be less than end
index."
);
"
The start row index must be less than the end row
index."
);
if
(
dims_
[
0
]
==
1
)
{
return
*
this
;
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
cc220eec
...
...
@@ -49,7 +49,7 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Y"
);
}
// Explicitly set
data type of
output of the cross_entropy operator
// Explicitly set
that data type of the
output of the cross_entropy operator
// is determined by its input "X".
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
cc220eec
...
...
@@ -17,6 +17,9 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
using
framework
::
LoDTensor
;
using
framework
::
LoD
;
class
LinearChainCrfOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
LinearChainCrfOpMaker
(
framework
::
OpProto
*
proto
,
...
...
@@ -77,14 +80,14 @@ Please see http://www.cs.columbia.edu/~mcollins/fb.pdf for reference.
Equation:
- Denote
the first input of this operator (Emission)
as \f$x\f$ here.
- The first D values of
the second input (Transition) of this operator are for
starting
weights, denoted as \f$a\f$ here.
- The next D values of
the second input (Transition) of this operator are for
ending
weights, denoted as \f$b\f$ here.
- The remaning values of
the second input (Transition) are for transition
weights,
denoted as \f$w\f$ here.
- Denote
the third input of this operator
(Label) as \f$s\f$ here.
- Denote
Input(Emission) to this operator
as \f$x\f$ here.
- The first D values of
Input(Transition) to this operator are for starting
weights, denoted as \f$a\f$ here.
- The next D values of
Input(Transition) of this operator are for ending
weights, denoted as \f$b\f$ here.
- The remaning values of
Input(Transition) are for transition weights,
denoted as \f$w\f$ here.
- Denote
Input
(Label) as \f$s\f$ here.
The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as:
\f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L}
...
...
@@ -107,8 +110,7 @@ sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.
3. The 2nd dimension of the first input of this operator (Emission) MUST be
equal to the tag number.
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
)DOC"
);
}
...
...
@@ -136,33 +138,188 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
emission_dims
.
size
(),
2UL
,
"The
input Emission
should be a 2-D tensor."
);
"The
Input(Emission)
should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
transition_dims
.
size
(),
2UL
,
"The
input Transition
should be a 2-D tensor."
);
"The
Input(Transition)
should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
transition_dims
[
0
]
+
2
,
transition_dims
[
1
],
"An invalid dimension for the
input Transition
, which should "
transition_dims
[
0
]
-
2
,
transition_dims
[
1
],
"An invalid dimension for the
Input(Transition)
, which should "
"be a 2-D tensor with shape [D + 2 x D]."
);
PADDLE_ENFORCE_EQ
(
emission_dims
[
1
],
transition_dims
[
1
],
"The 2nd dimension of the
input Emission and the input Transition
"
"The 2nd dimension of the
Input(Emission) and the Input(Transition)
"
"should be equal to the tag number."
);
PADDLE_ENFORCE
(
label_dims
.
size
()
==
2UL
&&
label_dims
[
1
]
==
1UL
,
"The input Label should be a 2-D tensor "
"with the 2nd dimensions fixed to 1."
);
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1."
);
PADDLE_ENFORCE_EQ
(
emission_dims
[
0
],
label_dims
[
0
],
"The height of Input(Emission) and the height of Input(Label) "
"should be the same."
);
ctx
->
SetOutputDim
(
"Alpha"
,
emission_dims
);
// (TODO caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
// is the sequence number in a mini-batch. The dimension set here should be
// resized to its correct size in the function Compute.
ctx
->
SetOutputDim
(
"LogLikelihood"
,
{
emission_dims
[
0
],
1
});
}
// Explicitly set
data type of output of the linear_chain_crf operator
// is determined by its input "Emission".
// Explicitly set
that the data type of output of the linear_chain_crf
//
operator
is determined by its input "Emission".
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Emission"
)
->
type
());
}
};
template
<
typename
T
>
class
LinearChainCrfOpKernel
<
platform
::
CPUPlace
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
auto
*
emission_weights
=
ctx
.
Input
<
LoDTensor
>
(
"Emission"
);
auto
*
transition_weights
=
ctx
.
Input
<
Tensor
>
(
"Transition"
);
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
in_lod
=
emission_weights
->
lod
();
// TODO(caoying) The checks related to LoD information should be
// moved into InferShape once after the InferShape is refactored.
PADDLE_ENFORCE_EQ
(
emission_weights
->
NumLevels
(),
1UL
,
"The Input(Emission) should be a sequence."
);
PADDLE_ENFORCE_EQ
(
label
->
NumLevels
(),
1UL
,
"The Input(Label) should be a sequence."
);
const
size_t
level
=
0
;
auto
emission_dims
=
emission_weights
->
dims
();
const
size_t
seq_num
=
in_lod
[
level
].
size
()
-
1
;
// TODO(caoying) These local variables seems to be created and destroied
// every time this function is called. Will this bring additional overhead?
Tensor
emission_exps
;
Tensor
emission_row_max
;
Tensor
transition_exps
;
emission_exps
.
mutable_data
<
T
>
(
emission_dims
,
platform
::
CPUPlace
());
emission_row_max
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
emission_dims
[
0
],
1
}),
platform
::
CPUPlace
());
transition_exps
.
mutable_data
<
T
>
(
transition_weights
->
dims
(),
platform
::
CPUPlace
());
auto
*
alpha
=
ctx
.
Output
<
Tensor
>
(
"Alpha"
);
alpha
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
ll
=
ctx
.
Output
<
Tensor
>
(
"LogLikelihood"
);
// resize the output tensor to the correct dimension.
ll
->
Resize
({
static_cast
<
int
>
(
seq_num
),
1
});
T
*
log_likelihood
=
ll
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
const
Tensor
one_seq
=
emission_weights
->
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_row_max
=
emission_row_max
.
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_exps
=
emission_exps
.
Slice
<
T
>
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_alpha
=
alpha
->
Slice
<
T
>
(
start_pos
,
end_pos
);
log_likelihood
[
i
]
=
ForwardOneSequence
(
ctx
.
device_context
(),
one_seq
,
one_seq_row_max
,
one_seq_exps
,
(
*
transition_weights
),
transition_exps
,
one_seq_label
,
one_seq_alpha
);
}
}
protected:
T
ForwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
emission
,
Tensor
&
emission_row_max
,
Tensor
&
emission_exps
,
const
Tensor
&
trans_weights
,
Tensor
&
trans_weight_exps
,
const
Tensor
&
label
,
Tensor
&
alpha
)
const
{
// (TODO caoying) Evaluate and optimize this.
// The Eigen compution kernel will be invoked for multiple times.
// Some computations regardless of sequence inforamtion could be performed
// only one time for the entire batch. This potentially could be optimized.
auto
x_dims
=
emission
.
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
T
*
alpha_value
=
alpha
.
data
<
T
>
();
auto
x
=
EigenMatrix
<
T
>::
From
(
emission
);
auto
x_row_max
=
EigenMatrix
<
T
>::
From
(
emission_row_max
);
const
int
class_dim
=
1
;
x_row_max
.
device
(
*
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
x
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
class_dim
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
int
(
seq_length
),
1
));
auto
x_exps
=
EigenMatrix
<
T
>::
From
(
emission_exps
);
x_exps
.
device
(
*
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
(
x
-
x_row_max
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
))).
exp
();
auto
w
=
EigenMatrix
<
T
>::
From
(
trans_weights
);
auto
w_exps
=
EigenMatrix
<
T
>::
From
(
trans_weight_exps
);
w_exps
.
device
(
*
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
w
.
exp
();
// The 1st row of w are transition weights for start mask.
const
size_t
start_ridx
=
0
;
// The 2nd row of w are transition weights for end mask.
const
size_t
end_ridx
=
1
;
// Transition weights among other tags begins from the 3rd row of w.
const
size_t
state_base_ridx
=
2
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
alpha_value
[
i
]
=
w_exps
(
start_ridx
,
i
)
*
x_exps
(
0
,
i
);
}
T
ll
=
-
x_row_max
(
0
,
1
)
-
std
::
log
(
NormalizeL1
(
alpha_value
,
tag_num
));
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
*
w_exps
(
j
+
state_base_ridx
,
i
);
}
alpha_value
[
k
*
tag_num
+
i
]
=
x_exps
(
k
,
i
)
*
sum
;
}
ll
-=
x_row_max
(
k
,
1
)
+
std
::
log
(
NormalizeL1
(
alpha_value
+
k
*
tag_num
,
tag_num
));
}
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
sum
+=
alpha_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
*
w_exps
(
end_ridx
,
i
);
}
ll
-=
std
::
log
(
sum
);
const
int
*
lbl
=
label
.
data
<
int
>
();
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
),
tag_num
,
"An invalid tag label that execesses the largest tag number."
);
// Calculate the nominator part, which depends on the label sequence.
ll
+=
w
(
start_ridx
,
lbl
[
0
])
+
x
(
start_ridx
,
lbl
[
0
])
+
w
(
end_ridx
,
lbl
[
seq_length
-
1
]);
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
ll
+=
x
(
k
,
lbl
[
k
])
+
w
(
lbl
[
k
-
1
],
lbl
[
k
]);
return
-
ll
;
}
private:
T
NormalizeL1
(
T
*
x
,
size_t
len
)
const
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
sum
+=
x
[
i
];
// (This comment is from the old LinearChainCRFLayer.)
// Right now, we just bet that sum won't be zero. If this really happens, we
// will figure out what should be done then.
PADDLE_ENFORCE
(
sum
,
"The unnormalized probabilites of all possible unfinished "
"sequences must be greater than 0."
);
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
x
[
i
]
/=
sum
;
return
sum
;
}
};
class
LinearChainCrfGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -171,12 +328,25 @@ class LinearChainCrfGradOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
};
template
<
typename
T
>
class
LinearChainCrfGradOpKernel
<
platform
::
CPUPlace
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
linear_chain_crf
,
ops
::
LinearChainCrfOp
,
ops
::
LinearChainCrfOpMaker
,
linear_chain_crf_grad
,
ops
::
LinearChainCrfGradOp
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf
,
ops
::
LinearChainCrfOpKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf_grad
,
ops
::
LinearChainCrfGradOpKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf
,
ops
::
LinearChainCrfOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf_grad
,
ops
::
LinearChainCrfGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/linear_chain_crf_op.h
浏览文件 @
cc220eec
...
...
@@ -19,27 +19,31 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
template
<
typename
Place
,
typename
T
>
class
LinearChainCrfOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
protected:
T
ForwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
emission
,
Tensor
&
emission_row_max
,
Tensor
&
emission_exps
,
const
Tensor
&
trans_weights
,
Tensor
&
trans_weight_exps
,
const
Tensor
&
label
,
Tensor
&
a
)
const
;
private:
T
NormalizeL1
(
T
*
x
,
size_t
len
)
const
;
};
template
<
typename
T
>
template
<
typename
Place
,
typename
T
>
class
LinearChainCrfGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
}
// namespace operators
...
...
paddle/operators/softmax_with_cross_entropy_op.cc
浏览文件 @
cc220eec
...
...
@@ -60,19 +60,23 @@ Because this operators performs a softmax on logits internally, it expects
unscaled logits. Please do not call this op with the output of softmax operator,
which will produce incorrect results.
This operators expects mutually exclusive hard labels, each sample in a batch
is in exactly one class with probabilities 1. Each sample in the batch with one
and only one label.
When the attribute softLabel is set false, this operators expects mutually
exclusive hard labels, each sample in a batch is in exactly one class with
probabilities 1. Each sample in the batch with one
and only one label.
Equation:
1) hard label (one-hot label)
Loss_j = -\text{Logit}_{Label_j} + \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right), j = 1, ..., K
Loss_j = \f$ -\text{Logit}_{Label_j} +
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
j = 1, ..., K $\f
2) soft label (a distribution over all classes)
Loss_j = -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i-\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right), j = 1,...,K
Loss_j = \f$ -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i -
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
j = 1,...,K $\f
)DOC"
);
}
...
...
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
浏览文件 @
cc220eec
...
...
@@ -61,13 +61,13 @@ class LinearChainCrfForward(object):
s
+=
alpha
[
-
1
,
i
]
*
self
.
b_exps
[
i
]
log_likelihood
-=
np
.
log
(
s
)
# calculate the no
n
inator part.
# calculate the no
m
inator part.
log_likelihood
+=
(
self
.
a
[
label
[
0
]]
+
self
.
x
[
0
,
label
[
0
]]
+
self
.
b
[
label
[
-
1
]])
for
k
in
range
(
1
,
seq_len
):
log_likelihood
+=
(
self
.
x
[
k
,
label
[
k
]]
+
self
.
w
[
label
[
k
-
1
],
label
[
k
]])
return
log_likelihood
return
-
log_likelihood
def
crf_forward_compute
(
self
):
for
i
in
range
(
self
.
seq_num
):
...
...
@@ -102,7 +102,7 @@ class TestLinearChainCrfOp(OpTest):
self
.
inputs
=
{
"Emission"
:
(
emission
,
lod
),
"Transition"
:
transition
,
"
l
abel"
:
(
labels
,
lod
)
"
L
abel"
:
(
labels
,
lod
)
}
crf
=
LinearChainCrfForward
(
lod
[
0
],
emission
,
transition
,
labels
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录