Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
cb2dca53
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cb2dca53
编写于
2月 19, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix cuda kernel error
上级
04b8b9e9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
49 addition
and
36 deletion
+49
-36
paddle/fluid/operators/detection/yolo_box_op.cu
paddle/fluid/operators/detection/yolo_box_op.cu
+26
-12
paddle/fluid/operators/detection/yolo_box_op.h
paddle/fluid/operators/detection/yolo_box_op.h
+19
-21
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
+4
-3
未找到文件。
paddle/fluid/operators/detection/yolo_box_op.cu
浏览文件 @
cb2dca53
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/yolo_box_op.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -22,11 +23,12 @@ using Tensor = framework::Tensor;
template
<
typename
T
>
__global__
void
KeYoloBoxFw
(
const
T
*
input
,
const
int
*
imgsize
,
T
*
boxes
,
T
*
scores
,
const
float
conf_thresh
,
std
::
vector
<
int
>
anchors
,
const
int
h
,
const
in
w
,
const
int
*
anchors
,
const
int
h
,
const
int
w
,
const
int
an_num
,
const
int
class_num
,
const
int
box_num
,
const
int
input_size
)
{
const
int
box_num
,
int
input_size
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
T
box
[
4
];
for
(;
tid
<
box_num
;
tid
+=
stride
)
{
int
grid_num
=
h
*
w
;
int
i
=
tid
/
box_num
;
...
...
@@ -47,10 +49,10 @@ __global__ void KeYoloBoxFw(const T* input, const int* imgsize, T* boxes,
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
0
);
Box
<
T
>
pred
=
GetYoloBox
<
T
>
(
input
,
anchors
,
l
,
k
,
j
,
h
,
input_size
,
box_idx
,
GetYoloBox
<
T
>
(
box
,
input
,
anchors
,
l
,
k
,
j
,
h
,
input_size
,
box_idx
,
grid_num
,
img_height
,
img_width
);
box_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes
,
pred
,
box_idx
);
CalcDetectionBox
<
T
>
(
boxes
,
box
,
box_idx
);
int
label_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
5
);
...
...
@@ -64,7 +66,7 @@ template <typename T>
class
YoloBoxOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"
Input
"
);
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"
X
"
);
auto
*
img_size
=
ctx
.
Input
<
Tensor
>
(
"ImgSize"
);
auto
*
boxes
=
ctx
.
Output
<
Tensor
>
(
"Boxes"
);
auto
*
scores
=
ctx
.
Output
<
Tensor
>
(
"Scores"
);
...
...
@@ -81,23 +83,35 @@ class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size
=
downsample_ratio
*
h
;
Tensor
anchors_t
,
cpu_anchors_t
;
auto
cpu_anchors_data
=
cpu_anchors_t
.
mutable_data
<
int
>
({
an_num
*
2
},
platform
::
CPUPlace
());
std
::
copy
(
anchors
.
begin
(),
anchors
.
end
(),
cpu_anchors_data
);
TensorCopySync
(
cpu_anchors_t
,
ctx
.
GetPlace
(),
&
anchors_t
);
auto
anchors_data
=
anchors_t
.
data
<
int
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
imgsize
->
data
<
int
>
();
const
int
*
imgsize_data
=
img
_
size
->
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
ctx
.
GetPlace
());
memset
(
boxes_data
,
0
,
boxes
->
numel
()
*
sizeof
(
T
));
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
ctx
.
GetPlace
());
memset
(
scores_data
,
0
,
scores
->
numel
()
*
sizeof
(
T
));
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
set_zero
(
dev_ctx
,
boxes
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
scores
,
static_cast
<
T
>
(
0
));
int
grid_dim
=
(
n
*
box_num
+
512
-
1
)
/
512
;
grid_dim
=
grid_dim
>
8
?
8
:
grid_dim
;
KeYoloBoxFw
<
T
><<<
grid_dim
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
imgsize_data
,
boxes_data
,
scores_data
,
conf_thresh
,
anchors_data
,
h
,
w
,
an_num
,
class_num
,
box_num
,
input_size
);
}
};
// namespace operators
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
density_prior
_box
,
ops
::
DensityPrior
BoxOpCUDAKernel
<
float
>
,
ops
::
DensityPrior
BoxOpCUDAKernel
<
double
>
);
REGISTER_OP_CUDA_KERNEL
(
yolo
_box
,
ops
::
Yolo
BoxOpCUDAKernel
<
float
>
,
ops
::
Yolo
BoxOpCUDAKernel
<
double
>
);
paddle/fluid/operators/detection/yolo_box_op.h
浏览文件 @
cb2dca53
...
...
@@ -13,35 +13,30 @@
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
struct
Box
{
T
x
,
y
,
w
,
h
;
};
template
<
typename
T
>
static
inline
T
sigmoid
(
T
x
)
{
HOSTDEVICE
inline
T
sigmoid
(
T
x
)
{
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
));
}
template
<
typename
T
>
HOSTDEVICE
inline
Box
<
T
>
GetYoloBox
(
const
T
*
x
,
std
::
vector
<
int
>
anchors
,
int
i
,
HOSTDEVICE
inline
void
GetYoloBox
(
T
*
box
,
const
T
*
x
,
const
int
*
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
input_size
,
int
index
,
int
stride
,
int
img_height
,
int
img_width
)
{
Box
<
T
>
b
;
b
.
x
=
(
i
+
sigmoid
<
T
>
(
x
[
index
]))
*
img_width
/
grid_size
;
b
.
y
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
]))
*
img_height
/
grid_size
;
b
.
w
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
box
[
0
]
=
(
i
+
sigmoid
<
T
>
(
x
[
index
]))
*
img_width
/
grid_size
;
box
[
1
]
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
]))
*
img_height
/
grid_size
;
box
[
2
]
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
input_size
;
b
.
h
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
img_height
/
b
ox
[
3
]
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
img_height
/
input_size
;
return
b
;
}
HOSTDEVICE
inline
int
GetEntryIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
...
...
@@ -51,12 +46,12 @@ HOSTDEVICE inline int GetEntryIndex(int batch, int an_idx, int hw_idx,
}
template
<
typename
T
>
HOSTDEVICE
inline
void
CalcDetectionBox
(
T
*
boxes
,
Box
<
T
>
pred
,
HOSTDEVICE
inline
void
CalcDetectionBox
(
T
*
boxes
,
T
*
box
,
const
int
box_idx
)
{
boxes
[
box_idx
]
=
pred
.
x
-
pred
.
w
/
2
;
boxes
[
box_idx
+
1
]
=
pred
.
y
-
pred
.
h
/
2
;
boxes
[
box_idx
+
2
]
=
pred
.
x
+
pred
.
w
/
2
;
boxes
[
box_idx
+
3
]
=
pred
.
y
+
pred
.
h
/
2
;
boxes
[
box_idx
]
=
box
[
0
]
-
box
[
2
]
/
2
;
boxes
[
box_idx
+
1
]
=
box
[
1
]
-
box
[
3
]
/
2
;
boxes
[
box_idx
+
2
]
=
box
[
0
]
+
box
[
2
]
/
2
;
boxes
[
box_idx
+
3
]
=
box
[
1
]
+
box
[
3
]
/
2
;
}
template
<
typename
T
>
...
...
@@ -92,6 +87,9 @@ class YoloBoxKernel : public framework::OpKernel<T> {
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
int
anchors_
[
anchors
.
size
()];
std
::
copy
(
anchors
.
begin
(),
anchors
.
end
(),
anchors_
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
imgsize
->
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
ctx
.
GetPlace
());
...
...
@@ -100,6 +98,7 @@ class YoloBoxKernel : public framework::OpKernel<T> {
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
ctx
.
GetPlace
());
memset
(
scores_data
,
0
,
scores
->
numel
()
*
sizeof
(
T
));
T
box
[
4
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
int
img_height
=
imgsize_data
[
2
*
i
];
int
img_width
=
imgsize_data
[
2
*
i
+
1
];
...
...
@@ -116,11 +115,10 @@ class YoloBoxKernel : public framework::OpKernel<T> {
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
GetYoloBox
<
T
>
(
input_data
,
anchors
,
l
,
k
,
j
,
h
,
input_size
,
box_idx
,
stride
,
img_height
,
img_width
);
GetYoloBox
<
T
>
(
box
,
input_data
,
anchors_
,
l
,
k
,
j
,
h
,
input_size
,
box_idx
,
stride
,
img_height
,
img_width
);
box_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes_data
,
pred
,
box_idx
);
CalcDetectionBox
<
T
>
(
boxes_data
,
box
,
box_idx
);
int
label_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
5
);
...
...
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
浏览文件 @
cb2dca53
...
...
@@ -93,16 +93,17 @@ class TestYoloBoxOp(OpTest):
}
def
test_check_output
(
self
):
self
.
check_output
()
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
(
len
(
self
.
anchors
)
//
2
)
self
.
batch_size
=
3
self
.
batch_size
=
1
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
x_shape
=
(
self
.
batch_size
,
an_num
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
x_shape
=
(
self
.
batch_size
,
an_num
*
(
5
+
self
.
class_num
),
2
,
2
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录