Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ca62c104
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ca62c104
编写于
3月 06, 2017
作者:
Y
Yu Yang
提交者:
GitHub
3月 06, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1564 from reyoung/feature/rename_reader_dict_to_feeding
Feature/rename reader dict to feeding
上级
963bd5d5
26445368
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
64 addition
and
76 deletion
+64
-76
demo/image_classification/api_v2_train.py
demo/image_classification/api_v2_train.py
+7
-6
demo/introduction/api_train_v2.py
demo/introduction/api_train_v2.py
+11
-11
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+2
-2
demo/semantic_role_labeling/api_train_v2.py
demo/semantic_role_labeling/api_train_v2.py
+3
-3
demo/sentiment/train_v2.py
demo/sentiment/train_v2.py
+9
-14
demo/seqToseq/api_train_v2.py
demo/seqToseq/api_train_v2.py
+3
-3
python/paddle/v2/data_feeder.py
python/paddle/v2/data_feeder.py
+18
-6
python/paddle/v2/inference.py
python/paddle/v2/inference.py
+4
-12
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+7
-19
未找到文件。
demo/image_classification/api_v2_train.py
浏览文件 @
ca62c104
...
...
@@ -13,8 +13,9 @@
# limitations under the License
import
sys
import
paddle.v2
as
paddle
from
api_v2_vgg
import
vgg_bn_drop
from
api_v2_resnet
import
resnet_cifar10
...
...
@@ -23,7 +24,7 @@ def main():
classdim
=
10
# PaddlePaddle init
paddle
.
init
(
use_gpu
=
Tru
e
,
trainer_count
=
1
)
paddle
.
init
(
use_gpu
=
Fals
e
,
trainer_count
=
1
)
image
=
paddle
.
layer
.
data
(
name
=
"image"
,
type
=
paddle
.
data_type
.
dense_vector
(
datadim
))
...
...
@@ -68,8 +69,8 @@ def main():
result
=
trainer
.
test
(
reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
128
),
reader_dict
=
{
'image'
:
0
,
'label'
:
1
})
feeding
=
{
'image'
:
0
,
'label'
:
1
})
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
# Create trainer
...
...
@@ -83,8 +84,8 @@ def main():
batch_size
=
128
),
num_passes
=
5
,
event_handler
=
event_handler
,
reader_dict
=
{
'image'
:
0
,
'label'
:
1
})
feeding
=
{
'image'
:
0
,
'label'
:
1
})
if
__name__
==
'__main__'
:
...
...
demo/introduction/api_train_v2.py
浏览文件 @
ca62c104
...
...
@@ -30,26 +30,26 @@ def main():
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f
, %s
"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
print
"Pass %d, Batch %d, Cost %f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
uci_housing
.
test
(),
batch_size
=
2
),
reader_dict
=
{
'x'
:
0
,
if
(
event
.
pass_id
+
1
)
%
10
==
0
:
result
=
trainer
.
test
(
reader
=
paddle
.
batch
(
uci_housing
.
test
(),
batch_size
=
2
),
feeding
=
{
'x'
:
0
,
'y'
:
1
})
if
event
.
pass_id
%
10
==
0
:
print
"Test %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
print
"Test %d, %.2f"
%
(
event
.
pass_id
,
result
.
cost
)
# training
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
uci_housing
.
train
(),
buf_size
=
500
),
batch_size
=
2
),
reader_dict
=
{
'x'
:
0
,
'y'
:
1
},
feeding
=
{
'x'
:
0
,
'y'
:
1
},
event_handler
=
event_handler
,
num_passes
=
30
)
...
...
demo/mnist/api_train_v2.py
浏览文件 @
ca62c104
...
...
@@ -92,7 +92,7 @@ def main():
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
1000
==
0
:
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
result
=
trainer
.
test
(
reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
256
))
print
"Pass %d, Batch %d, Cost %f, %s, Testing metrics %s"
%
(
...
...
@@ -103,7 +103,7 @@ def main():
parameters
.
to_tar
(
f
)
elif
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
result
=
trainer
.
test
(
reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
128
))
print
"Test with Pass %d, Cost %f, %s
\n
"
%
(
event
.
pass_id
,
result
.
cost
,
result
.
metrics
)
...
...
demo/semantic_role_labeling/api_train_v2.py
浏览文件 @
ca62c104
...
...
@@ -163,11 +163,11 @@ def main():
update_equation
=
optimizer
)
parameters
.
set
(
'emb'
,
load_parameter
(
conll05
.
get_embedding
(),
44068
,
32
))
trn_reader
=
paddle
.
reader
.
batched
(
trn_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
10
)
reader_dict
=
{
feeding
=
{
'word_data'
:
0
,
'ctx_n2_data'
:
1
,
'ctx_n1_data'
:
2
,
...
...
@@ -183,7 +183,7 @@ def main():
reader
=
trn_reader
,
event_handler
=
event_handler
,
num_passes
=
10000
,
reader_dict
=
reader_dict
)
feeding
=
feeding
)
if
__name__
==
'__main__'
:
...
...
demo/sentiment/train_v2.py
浏览文件 @
ca62c104
...
...
@@ -18,11 +18,7 @@ from paddle.trainer_config_helpers.poolings import MaxPooling
import
paddle.v2
as
paddle
def
convolution_net
(
input_dim
,
class_dim
=
2
,
emb_dim
=
128
,
hid_dim
=
128
,
is_predict
=
False
):
def
convolution_net
(
input_dim
,
class_dim
=
2
,
emb_dim
=
128
,
hid_dim
=
128
):
data
=
paddle
.
layer
.
data
(
"word"
,
paddle
.
data_type
.
integer_value_sequence
(
input_dim
))
emb
=
paddle
.
layer
.
embedding
(
input
=
data
,
size
=
emb_dim
)
...
...
@@ -42,8 +38,7 @@ def stacked_lstm_net(input_dim,
class_dim
=
2
,
emb_dim
=
128
,
hid_dim
=
512
,
stacked_num
=
3
,
is_predict
=
False
):
stacked_num
=
3
):
"""
A Wrapper for sentiment classification task.
This network uses bi-directional recurrent network,
...
...
@@ -110,7 +105,7 @@ def stacked_lstm_net(input_dim,
if
__name__
==
'__main__'
:
# init
paddle
.
init
(
use_gpu
=
Tru
e
,
trainer_count
=
4
)
paddle
.
init
(
use_gpu
=
Fals
e
,
trainer_count
=
4
)
# network config
print
'load dictionary...'
...
...
@@ -143,11 +138,11 @@ if __name__ == '__main__':
sys
.
stdout
.
flush
()
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
reader
=
paddle
.
batch
(
lambda
:
paddle
.
dataset
.
imdb
.
test
(
word_dict
),
batch_size
=
128
),
reader_dict
=
{
'word'
:
0
,
'label'
:
1
})
feeding
=
{
'word'
:
0
,
'label'
:
1
})
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
# create trainer
...
...
@@ -156,11 +151,11 @@ if __name__ == '__main__':
update_equation
=
adam_optimizer
)
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
lambda
:
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
1000
),
batch_size
=
100
),
event_handler
=
event_handler
,
reader_dict
=
{
'word'
:
0
,
'label'
:
1
},
feeding
=
{
'word'
:
0
,
'label'
:
1
},
num_passes
=
10
)
demo/seqToseq/api_train_v2.py
浏览文件 @
ca62c104
...
...
@@ -80,13 +80,13 @@ def main():
update_equation
=
optimizer
)
# define data reader
reader_dict
=
{
feeding
=
{
'source_language_word'
:
0
,
'target_language_word'
:
1
,
'target_language_next_word'
:
2
}
wmt14_reader
=
paddle
.
reader
.
batched
(
wmt14_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
train_reader
(
"data/pre-wmt14/train/train"
),
buf_size
=
8192
),
batch_size
=
5
)
...
...
@@ -103,7 +103,7 @@ def main():
reader
=
wmt14_reader
,
event_handler
=
event_handler
,
num_passes
=
10000
,
reader_dict
=
reader_dict
)
feeding
=
feeding
)
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/data_feeder.py
浏览文件 @
ca62c104
...
...
@@ -14,11 +14,18 @@
from
py_paddle
import
DataProviderConverter
import
data_type
import
paddle.trainer.PyDataProvider2
as
pydp2
__all__
=
[
'DataFeeder'
]
def
default_feeding_map
(
data_types
):
reader_dict
=
dict
()
for
i
,
tp
in
enumerate
(
data_types
):
reader_dict
[
tp
[
0
]]
=
i
return
reader_dict
class
DataFeeder
(
DataProviderConverter
):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
...
...
@@ -60,16 +67,21 @@ class DataFeeder(DataProviderConverter):
:type data_types: list
:param reader_dict: A dictionary to specify the position of each data
in the input data.
:type
reader_dict
: dict
:type
feeding
: dict
"""
def
__init__
(
self
,
data_types
,
reader_dict
):
def
__init__
(
self
,
data_types
,
feeding
=
None
):
self
.
input_names
=
[]
input_types
=
[]
self
.
reader_dict
=
reader_dict
if
feeding
is
None
:
feeding
=
default_feeding_map
(
data_types
)
self
.
feeding
=
feeding
for
each
in
data_types
:
self
.
input_names
.
append
(
each
[
0
])
assert
isinstance
(
each
[
1
],
data_type
.
InputType
)
if
not
isinstance
(
each
[
1
],
pydp2
.
InputType
):
raise
TypeError
(
"second item in each data_type should be an "
"InputType"
)
input_types
.
append
(
each
[
1
])
DataProviderConverter
.
__init__
(
self
,
input_types
)
...
...
@@ -90,7 +102,7 @@ class DataFeeder(DataProviderConverter):
for
each
in
data
:
reorder
=
[]
for
name
in
self
.
input_names
:
reorder
.
append
(
each
[
self
.
reader_dict
[
name
]])
reorder
.
append
(
each
[
self
.
feeding
[
name
]])
retv
.
append
(
reorder
)
return
retv
...
...
python/paddle/v2/inference.py
浏览文件 @
ca62c104
...
...
@@ -21,10 +21,8 @@ class Inference(object):
self
.
__gradient_machine__
=
gm
self
.
__data_types__
=
topo
.
data_type
()
def
iter_infer
(
self
,
reader
,
reader_dict
=
None
):
if
reader_dict
is
None
:
reader_dict
=
self
.
default_reader_dict
()
feeder
=
DataFeeder
(
self
.
__data_types__
,
reader_dict
)
def
iter_infer
(
self
,
reader
,
feeding
=
None
):
feeder
=
DataFeeder
(
self
.
__data_types__
,
feeding
)
self
.
__gradient_machine__
.
start
()
for
data_batch
in
reader
():
yield
self
.
__gradient_machine__
.
forwardTest
(
feeder
(
data_batch
))
...
...
@@ -47,13 +45,7 @@ class Inference(object):
else
:
return
retv
def
default_reader_dict
(
self
):
reader_dict
=
dict
()
for
i
,
tp
in
enumerate
(
self
.
__data_types__
):
reader_dict
[
tp
[
0
]]
=
i
return
reader_dict
def
infer
(
output
,
parameters
,
reader
,
reader_dict
=
None
,
field
=
'value'
):
def
infer
(
output
,
parameters
,
reader
,
feeding
=
None
,
field
=
'value'
):
inferer
=
Inference
(
output
=
output
,
parameters
=
parameters
)
return
inferer
.
infer
(
field
=
field
,
reader
=
reader
,
reader_dict
=
reader_dict
)
return
inferer
.
infer
(
field
=
field
,
reader
=
reader
,
feeding
=
feeding
)
python/paddle/v2/trainer.py
浏览文件 @
ca62c104
...
...
@@ -61,7 +61,7 @@ class SGD(object):
self
.
__gradient_machine__
.
randParameters
()
parameters
.
append_gradient_machine
(
gm
)
def
train
(
self
,
reader
,
num_passes
=
1
,
event_handler
=
None
,
reader_dict
=
None
):
def
train
(
self
,
reader
,
num_passes
=
1
,
event_handler
=
None
,
feeding
=
None
):
"""
Training method. Will train num_passes of input data.
...
...
@@ -70,14 +70,13 @@ class SGD(object):
:param event_handler: Event handler. A method will be invoked when event
occurred.
:type event_handler: (BaseEvent) => None
:param feeding: Feeding is a map of neural network input name and array
index that reader returns.
:type feeding: dict
:return:
"""
if
event_handler
is
None
:
event_handler
=
default_event_handler
if
reader_dict
is
None
:
reader_dict
=
self
.
default_reader_dict
()
__check_train_args__
(
**
locals
())
updater
=
self
.
__optimizer__
.
create_local_updater
()
...
...
@@ -89,9 +88,7 @@ class SGD(object):
pass_evaluator
=
self
.
__gradient_machine__
.
makeEvaluator
()
assert
isinstance
(
pass_evaluator
,
api
.
Evaluator
)
out_args
=
api
.
Arguments
.
createArguments
(
0
)
feeder
=
DataFeeder
(
self
.
__data_types__
,
reader_dict
)
feeder
=
DataFeeder
(
self
.
__data_types__
,
feeding
)
for
pass_id
in
xrange
(
num_passes
):
event_handler
(
v2_event
.
BeginPass
(
pass_id
))
pass_evaluator
.
start
()
...
...
@@ -125,17 +122,8 @@ class SGD(object):
event_handler
(
v2_event
.
EndPass
(
pass_id
,
evaluator
=
pass_evaluator
))
self
.
__gradient_machine__
.
finish
()
def
default_reader_dict
(
self
):
reader_dict
=
dict
()
for
i
,
tp
in
enumerate
(
self
.
__data_types__
):
reader_dict
[
tp
[
0
]]
=
i
return
reader_dict
def
test
(
self
,
reader
,
reader_dict
=
None
):
if
reader_dict
is
None
:
reader_dict
=
self
.
default_reader_dict
()
feeder
=
DataFeeder
(
self
.
__data_types__
,
reader_dict
)
def
test
(
self
,
reader
,
feeding
=
None
):
feeder
=
DataFeeder
(
self
.
__data_types__
,
feeding
)
evaluator
=
self
.
__gradient_machine__
.
makeEvaluator
()
out_args
=
api
.
Arguments
.
createArguments
(
0
)
evaluator
.
start
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录