Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c9de6f1b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c9de6f1b
编写于
12月 06, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
init parallel graph mode
上级
29d9fb53
变更
30
隐藏空白更改
内联
并排
Showing
30 changed file
with
399 addition
and
91 deletion
+399
-91
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+2
-0
paddle/fluid/framework/details/all_reduce_op_handle.cc
paddle/fluid/framework/details/all_reduce_op_handle.cc
+24
-4
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+1
-0
paddle/fluid/framework/details/computation_op_handle.cc
paddle/fluid/framework/details/computation_op_handle.cc
+10
-2
paddle/fluid/framework/details/computation_op_handle.h
paddle/fluid/framework/details/computation_op_handle.h
+1
-0
paddle/fluid/framework/details/execution_strategy.h
paddle/fluid/framework/details/execution_strategy.h
+1
-1
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+6
-2
paddle/fluid/framework/details/op_handle_base.cc
paddle/fluid/framework/details/op_handle_base.cc
+2
-1
paddle/fluid/framework/details/op_handle_base.h
paddle/fluid/framework/details/op_handle_base.h
+0
-1
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
...le/fluid/framework/details/parallel_ssa_graph_executor.cc
+66
-0
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
+51
-0
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
...id/framework/details/scope_buffered_ssa_graph_executor.cc
+23
-18
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h
...uid/framework/details/scope_buffered_ssa_graph_executor.h
+3
-2
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+1
-0
paddle/fluid/framework/details/var_handle.cc
paddle/fluid/framework/details/var_handle.cc
+1
-1
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+94
-30
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+2
-0
paddle/fluid/framework/scope.cc
paddle/fluid/framework/scope.cc
+4
-1
paddle/fluid/framework/threadpool.cc
paddle/fluid/framework/threadpool.cc
+12
-4
paddle/fluid/framework/threadpool.h
paddle/fluid/framework/threadpool.h
+2
-2
paddle/fluid/framework/threadpool_test.cc
paddle/fluid/framework/threadpool_test.cc
+44
-0
paddle/fluid/operators/reader/blocking_queue.h
paddle/fluid/operators/reader/blocking_queue.h
+3
-0
paddle/fluid/operators/reader/buffered_reader.cc
paddle/fluid/operators/reader/buffered_reader.cc
+5
-0
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
.../fluid/operators/reader/create_double_buffer_reader_op.cc
+11
-3
paddle/fluid/operators/reader/create_py_reader_op.cc
paddle/fluid/operators/reader/create_py_reader_op.cc
+2
-0
paddle/fluid/operators/reader/open_files_op.cc
paddle/fluid/operators/reader/open_files_op.cc
+2
-0
paddle/fluid/platform/nccl_helper.h
paddle/fluid/platform/nccl_helper.h
+5
-2
paddle/fluid/platform/profiler.cc
paddle/fluid/platform/profiler.cc
+7
-5
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+13
-11
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
c9de6f1b
...
...
@@ -177,7 +177,7 @@ else()
endif
()
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
parallel_ssa_graph_executor
graph build_strategy
fast_threaded_ssa_graph_executor variable_helper
)
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
c9de6f1b
...
...
@@ -54,6 +54,8 @@ cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ${SSA_GRAPH_EXECUT
cc_library
(
threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context
)
cc_library
(
parallel_ssa_graph_executor SRCS parallel_ssa_graph_executor.cc DEPS threaded_ssa_graph_executor
)
cc_test
(
broadcast_op_test SRCS broadcast_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
device_context broadcast_op_handle
)
cc_test
(
gather_op_test SRCS gather_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
...
...
paddle/fluid/framework/details/all_reduce_op_handle.cc
浏览文件 @
c9de6f1b
...
...
@@ -46,20 +46,27 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
#endif
void
AllReduceOpHandle
::
RunImpl
()
{
int64_t
start_ts
=
GetTS
();
int64_t
func_ts
=
GetTS
();
VLOG
(
5
)
<<
"all_reduce_op_handle::RunImpl start"
;
platform
::
RecordEvent
record_event
(
Name
(),
dev_ctxes_
.
cbegin
()
->
second
);
// FIXME(typhoonzero): If scope0(global scope) have NCCL_ID_VAR,
// this is a distributed or inter-process call, find a better way.
#ifdef PADDLE_WITH_CUDA
if
(
NoDummyInputSize
()
==
1
&&
local_scopes_
[
0
]
->
Find
Local
Var
(
NCCL_ID_VARNAME
)
==
nullptr
)
{
local_scopes_
[
0
]
->
FindVar
(
NCCL_ID_VARNAME
)
==
nullptr
)
{
#else
if
(
NoDummyInputSize
()
==
1
)
{
#endif
return
;
// No need to all reduce when GPU count = 1;
}
else
{
// Wait input done
start_ts
=
GetTS
();
WaitInputVarGenerated
();
VLOG
(
5
)
<<
"all_reduce_op_handle wait input var spent: "
<<
GetTS
()
-
start_ts
<<
" (ns)."
;
start_ts
=
GetTS
();
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
this
->
Inputs
());
auto
out_var_handles
=
DynamicCast
<
VarHandle
>
(
this
->
Outputs
());
PADDLE_ENFORCE_EQ
(
...
...
@@ -100,6 +107,8 @@ void AllReduceOpHandle::RunImpl() {
}
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
VLOG
(
5
)
<<
"call allreduce: "
<<
in_var_handles
[
i
]
->
name_
<<
" on dev: "
<<
dev_id
;
auto
&
nccl_ctx
=
nccl_ctxs_
->
at
(
dev_id
);
auto
stream
=
nccl_ctx
.
stream
();
auto
comm
=
nccl_ctx
.
comm_
;
...
...
@@ -110,11 +119,20 @@ void AllReduceOpHandle::RunImpl() {
});
}
this
->
RunAndRecordEvent
([
&
]
{
platform
::
NCCLGroupGuard
guard
;
for
(
auto
&
call
:
all_reduce_calls
)
{
call
();
// TODO(Yancey1989): need allreduce operator to avoid this flag
if
(
nccl_ctxs_
->
need_group_call_
)
{
platform
::
NCCLGroupGuard
guard
;
for
(
auto
&
call
:
all_reduce_calls
)
{
call
();
}
}
else
{
// only used in executor_type == ParallalGraph, one thread one GPU
// TODO(Yancey1989): use allreduce operator to avoid this tricky.
PADDLE_ENFORCE
(
all_reduce_calls
.
size
()
==
1UL
);
all_reduce_calls
[
0
]();
}
});
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
...
...
@@ -144,6 +162,8 @@ void AllReduceOpHandle::RunImpl() {
}
}
}
VLOG
(
5
)
<<
"all_reduce_op_handle Impl spent: "
<<
GetTS
()
-
func_ts
<<
" (ns)."
;
}
std
::
string
AllReduceOpHandle
::
Name
()
const
{
return
"all_reduce"
;
}
...
...
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
c9de6f1b
...
...
@@ -118,6 +118,7 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
main_program
));
for
(
std
::
shared_ptr
<
ir
::
Pass
>
&
pass
:
pass_builder_
->
AllPasses
())
{
VLOG
(
5
)
<<
"run pass: "
<<
pass
->
Type
();
if
(
pass
->
Type
()
==
"multi_devices_pass"
)
{
pass
->
Erase
(
"places"
);
pass
->
SetNotOwned
<
const
std
::
vector
<
platform
::
Place
>>
(
"places"
,
&
places
);
...
...
paddle/fluid/framework/details/computation_op_handle.cc
浏览文件 @
c9de6f1b
...
...
@@ -33,10 +33,18 @@ void ComputationOpHandle::RunImpl() {
op_
->
Run
(
*
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
(),
place_
);
};
if
(
is_lock_and_record_event_free_
)
{
if
(
Name
().
compare
(
"conv2d"
)
||
Name
().
compare
(
"conv2d_grad"
))
{
int64_t
start_ts
=
GetTS
();
auto
varname
=
DynamicCast
<
VarHandle
>
(
this
->
Outputs
())[
0
]
->
name_
;
run_func
();
VLOG
(
5
)
<<
Name
()
<<
"_op_handle: "
<<
varname
<<
" spent: "
<<
GetTS
()
-
start_ts
<<
" (ns)."
;
}
else
{
this
->
RunAndRecordEvent
(
run_func
);
if
(
is_lock_and_record_event_free_
)
{
run_func
();
}
else
{
this
->
RunAndRecordEvent
(
run_func
);
}
}
}
...
...
paddle/fluid/framework/details/computation_op_handle.h
浏览文件 @
c9de6f1b
...
...
@@ -17,6 +17,7 @@
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
...
...
paddle/fluid/framework/details/execution_strategy.h
浏览文件 @
c9de6f1b
...
...
@@ -20,7 +20,7 @@ namespace framework {
namespace
details
{
struct
ExecutionStrategy
{
enum
ExecutorType
{
kDefault
=
0
,
kExperimental
=
1
};
enum
ExecutorType
{
kDefault
=
0
,
kExperimental
=
1
,
kParallelGraph
=
2
};
size_t
num_threads_
{
0
};
bool
use_cuda_
{
true
};
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
c9de6f1b
...
...
@@ -300,7 +300,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
auto
nodes
=
graph
->
ReleaseNodes
();
ir
::
Graph
&
result
=
*
graph
;
int
num_trainers
=
Get
<
int
>
(
kNumTrainers
);
//
int num_trainers = Get<int>(kNumTrainers);
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
IsVar
()
&&
node
->
Var
())
{
...
...
@@ -329,6 +329,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
std
::
unordered_map
<
std
::
string
,
int
>
sharded_var_device
;
for
(
ir
::
Node
*
node
:
sorted_ops
)
{
VLOG
(
5
)
<<
"op name: "
<<
node
->
Op
()
->
Type
();
if
(
boost
::
get
<
int
>
(
node
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
==
static_cast
<
int
>
(
OpRole
::
kRPC
))
{
...
...
@@ -365,9 +366,11 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
// is true only for the op that scale the final scalar loss.
// It also assumes backward op will always follow the forward op in
// the block.
VLOG
(
5
)
<<
"this is loss scale op!"
;
is_forwarding
=
false
;
}
else
{
int
op_dev_id
=
GetOpDeviceID
(
result
,
node
,
sharded_var_device
);
VLOG
(
5
)
<<
"on device id: "
<<
op_dev_id
;
if
(
op_dev_id
!=
-
1
)
{
// This op only runs on one specific device.
CreateComputationalOp
(
&
result
,
node
,
op_dev_id
);
for
(
ir
::
Node
*
n
:
node
->
outputs
)
{
...
...
@@ -386,7 +389,8 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
CreateComputationalOps
(
&
result
,
node
,
places_
.
size
());
}
if
(
!
is_forwarding
&&
(
places_
.
size
()
>
1
||
num_trainers
>
1
))
{
// if (!is_forwarding && (places_.size() > 1 || num_trainers > 1)) {
if
(
!
is_forwarding
&&
nccl_ctxs_
->
contexts_
.
size
()
>
1
)
{
// Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once.
if
(
static_cast
<
bool
>
(
boost
::
get
<
int
>
(
node
->
Op
()
->
GetAttr
(
...
...
paddle/fluid/framework/details/op_handle_base.cc
浏览文件 @
c9de6f1b
...
...
@@ -41,6 +41,7 @@ OpHandleBase::~OpHandleBase() {
void
OpHandleBase
::
Run
(
bool
use_cuda
)
{
#ifdef PADDLE_WITH_CUDA
int64_t
start_ts
=
0
;
if
(
events_
.
empty
()
&&
use_cuda
)
{
for
(
auto
&
p
:
dev_ctxes_
)
{
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
.
first
).
device
;
...
...
@@ -52,7 +53,6 @@ void OpHandleBase::Run(bool use_cuda) {
#else
PADDLE_ENFORCE
(
!
use_cuda
);
#endif
RunImpl
();
}
...
...
@@ -125,6 +125,7 @@ bool OpHandleBase::NeedWait(VarHandleBase *in_var) {
void
OpHandleBase
::
RunAndRecordEvent
(
const
std
::
function
<
void
()
>
&
callback
)
{
#ifdef PADDLE_WITH_CUDA
if
(
!
events_
.
empty
())
{
// Use event
VLOG
(
5
)
<<
"events not empty"
;
std
::
function
<
void
()
>
method
=
callback
;
for
(
auto
&
p
:
dev_ctxes_
)
{
method
=
[
method
,
p
,
this
]()
{
...
...
paddle/fluid/framework/details/op_handle_base.h
浏览文件 @
c9de6f1b
...
...
@@ -26,7 +26,6 @@ namespace framework {
namespace
details
{
constexpr
char
kLocalExecScopeName
[]
=
"@LCOAL_SCOPE@"
;
// Wraps ir::Node and provide helper utilities.
// It's responsible for populating necessary fields of ir::Node.
class
OpHandleBase
{
...
...
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
0 → 100644
浏览文件 @
c9de6f1b
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
ParallelSSAGraphExecutor
::
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
)
:
strategy_
(
std
::
move
(
strategy
)),
local_scopes_
(
std
::
move
(
local_scopes
)),
places_
(
std
::
move
(
places
)),
graphs_
(
std
::
move
(
graphs
)),
pool_
(
places
.
size
()
>=
2
?
new
::
ThreadPool
(
places
.
size
())
:
nullptr
)
{
PADDLE_ENFORCE_EQ
(
places_
.
size
(),
local_scopes_
.
size
());
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
std
::
vector
<
framework
::
Scope
*>
scopes
=
{
local_scopes_
[
i
]};
std
::
vector
<
platform
::
Place
>
places
=
{
places_
[
i
]};
executors_
.
emplace_back
(
new
details
::
ThreadedSSAGraphExecutor
(
strategy_
,
scopes
,
places
,
std
::
move
(
graphs_
[
i
])));
}
}
FeedFetchList
ParallelSSAGraphExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
std
::
vector
<
std
::
future
<
void
>>
run_futures
;
FeedFetchList
fetch_data
;
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
call
=
[
this
,
i
]
{
// FIXME(Yancey1989): need to fix fetch data failed.
std
::
vector
<
std
::
string
>
empty
;
executors_
[
i
]
->
Run
(
empty
);
};
if
(
pool_
)
{
run_futures
.
emplace_back
(
pool_
->
enqueue
(
std
::
move
(
call
)));
}
else
{
call
();
}
}
if
(
pool_
)
{
for
(
auto
&
f
:
run_futures
)
{
f
.
wait
();
}
}
return
fetch_data
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
0 → 100644
浏览文件 @
c9de6f1b
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
ParallelSSAGraphExecutor
:
public
SSAGraphExecutor
{
public:
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
);
~
ParallelSSAGraphExecutor
()
final
=
default
;
const
ir
::
Graph
&
Graph
()
const
override
{
return
*
graphs_
[
0
];
}
FeedFetchList
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
override
;
private:
ExecutionStrategy
strategy_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
;
std
::
vector
<
std
::
unique_ptr
<
details
::
ThreadedSSAGraphExecutor
>>
executors_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
浏览文件 @
c9de6f1b
...
...
@@ -27,39 +27,40 @@ namespace framework {
namespace
details
{
ScopeBufferedSSAGraphExecutor
::
ScopeBufferedSSAGraphExecutor
(
ExecutionStrategy
strategy
,
std
::
vector
<
Scope
*>
local_scopes
,
std
::
vector
<
VariableInfo
>
var_infos
,
std
::
vector
<
platform
::
Place
>
places
,
std
::
vector
<
std
::
vector
<
VariableInfo
>>
var_infos_list
,
std
::
vector
<
platform
::
Place
>
places
,
std
::
unique_ptr
<
SSAGraphExecutor
>
&&
underlying_executor
)
:
strategy_
(
std
::
move
(
strategy
)),
underlying_executor_
(
std
::
move
(
underlying_executor
)),
local_scopes_
(
std
::
move
(
local_scopes
)),
var_infos_
(
std
::
move
(
var_infos
)),
var_infos_
list_
(
std
::
move
(
var_infos_list
)),
places_
(
std
::
move
(
places
))
{}
FeedFetchList
ScopeBufferedSSAGraphExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
if
(
drop_scope_counter_
==
0
)
{
// Create local scopes.
for
(
auto
it
=
local_scopes_
.
rbegin
();
it
!=
local_scopes_
.
rend
();
++
it
)
{
auto
&
scope
=
*
it
;
for
(
size_t
i
=
0
;
i
<
local_scopes_
.
size
();
++
i
)
{
auto
&
scope
=
local_scopes_
[
i
]
;
Scope
&
local_scope
=
scope
->
NewScope
();
*
scope
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
()
=
&
local_scope
;
for
(
auto
&
info
:
var_infos_
)
{
if
(
scope
->
FindVar
(
info
.
name_
)
!=
nullptr
)
{
continue
;
}
if
(
info
.
persistable_
)
{
// Persistable
InitializeVariable
(
scope
->
Var
(
info
.
name_
),
info
.
type_
);
}
else
{
InitializeVariable
(
local_scope
.
Var
(
info
.
name_
),
info
.
type_
);
for
(
auto
&
var_infos
:
var_infos_list_
)
{
for
(
auto
&
info
:
var_infos
)
{
if
(
scope
->
FindVar
(
info
.
name_
)
!=
nullptr
)
{
continue
;
}
if
(
info
.
persistable_
)
{
// Persistable
InitializeVariable
(
scope
->
Var
(
info
.
name_
),
info
.
type_
);
}
else
{
InitializeVariable
(
local_scope
.
Var
(
info
.
name_
),
info
.
type_
);
}
}
}
}
}
std
::
vector
<
framework
::
LoDTensor
>
fetch_data
;
std
::
exception_ptr
eptr
;
std
::
exception_ptr
eptr
=
nullptr
;
try
{
fetch_data
=
underlying_executor_
->
Run
(
fetch_tensors
);
}
catch
(...)
{
...
...
@@ -71,9 +72,13 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
#ifdef PADDLE_WITH_CUDA
const
std
::
string
gc_name
=
"garbage_collector"
;
DeviceGarbageCollectorMap
*
gc
=
Graph
().
Has
(
gc_name
)
?
&
(
Graph
().
Get
<
DeviceGarbageCollectorMap
>
(
gc_name
))
:
nullptr
;
DeviceGarbageCollectorMap
*
gc
=
nullptr
;
// FIXME(Yancey1989): need to fix gc failed on parallel graph mode
if
(
strategy_
.
type_
!=
ExecutionStrategy
::
kParallelGraph
)
{
gc
=
Graph
().
Has
(
gc_name
)
?
&
(
Graph
().
Get
<
DeviceGarbageCollectorMap
>
(
gc_name
))
:
nullptr
;
}
#endif
if
(
!
fetch_tensors
.
empty
()
||
...
...
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h
浏览文件 @
c9de6f1b
...
...
@@ -38,7 +38,8 @@ class ScopeBufferedSSAGraphExecutor : public SSAGraphExecutor {
public:
ScopeBufferedSSAGraphExecutor
(
ExecutionStrategy
strategy
,
std
::
vector
<
Scope
*>
local_scopes
,
std
::
vector
<
VariableInfo
>
var_infos
,
std
::
vector
<
platform
::
Place
>
places
,
std
::
vector
<
std
::
vector
<
VariableInfo
>>
var_info_list
,
std
::
vector
<
platform
::
Place
>
places
,
std
::
unique_ptr
<
SSAGraphExecutor
>&&
underlying_executor
);
const
ir
::
Graph
&
Graph
()
const
override
{
...
...
@@ -53,7 +54,7 @@ class ScopeBufferedSSAGraphExecutor : public SSAGraphExecutor {
ExecutionStrategy
strategy_
;
std
::
unique_ptr
<
SSAGraphExecutor
>
underlying_executor_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
VariableInfo
>
var_infos
_
;
std
::
vector
<
std
::
vector
<
VariableInfo
>>
var_infos_list
_
;
std
::
vector
<
platform
::
Place
>
places_
;
};
}
// namespace details
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
c9de6f1b
...
...
@@ -24,6 +24,7 @@
#include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/exception_holder.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/fetch_op_handle.h"
...
...
paddle/fluid/framework/details/var_handle.cc
浏览文件 @
c9de6f1b
...
...
@@ -20,7 +20,7 @@ namespace details {
VarHandleBase
::~
VarHandleBase
()
{}
VarHandle
::~
VarHandle
()
{
VLOG
(
4
)
<<
"deleting var handle "
<<
DebugString
();
}
VarHandle
::~
VarHandle
()
{
VLOG
(
5
)
<<
"deleting var handle "
<<
DebugString
();
}
std
::
string
VarHandle
::
DebugString
()
const
{
std
::
stringstream
ss
;
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
c9de6f1b
...
...
@@ -26,6 +26,7 @@ limitations under the License. */
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -53,6 +54,7 @@ class ParallelExecutorPrivate {
std
::
vector
<
Scope
*>
local_scopes_
;
Scope
*
global_scope_
;
// not owned
std
::
unique_ptr
<
details
::
SSAGraphExecutor
>
executor_
;
std
::
vector
<
std
::
unique_ptr
<
details
::
SSAGraphExecutor
>>
executors_
;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
...
...
@@ -84,6 +86,9 @@ ParallelExecutor::ParallelExecutor(
PADDLE_ENFORCE
(
places
.
size
()
>
1
,
"If you set build_strategy.reduce with 'Reduce',"
"the number of places must be greater than 1."
);
PADDLE_ENFORCE
(
exec_strategy
.
type_
!=
ExecutionStrategy
::
kParallelGraph
,
"You should set build_strategy.reduce with 'AllReduce' for "
"ParallelGraph executor type"
);
}
// Step 1. Bcast the params to devs.
...
...
@@ -106,31 +111,55 @@ ParallelExecutor::ParallelExecutor(
// Bcast Parameters to all GPUs
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto
*
nccl_id_var
=
scope
->
FindVar
(
NCCL_ID_VARNAME
);
ncclUniqueId
*
nccl_id
=
nullptr
;
std
::
unique_ptr
<
ncclUniqueId
>
nccl_id
=
nullptr
;
bool
need_group_call
=
true
;
if
(
nccl_id_var
!=
nullptr
)
{
nccl_id
=
nccl_id_var
->
GetMutable
<
ncclUniqueId
>
();
nccl_id
.
reset
(
nccl_id_var
->
GetMutable
<
ncclUniqueId
>
());
}
else
if
(
exec_strategy
.
type_
==
ExecutionStrategy
::
kParallelGraph
)
{
nccl_id
.
reset
(
new
ncclUniqueId
());
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclGetUniqueId
(
nccl_id
.
get
()));
*
member_
->
global_scope_
->
Var
(
NCCL_ID_VARNAME
)
->
GetMutable
<
ncclUniqueId
>
()
=
*
nccl_id
.
get
();
need_group_call
=
false
;
}
else
{
// init nccl_id in NCCLContextMap
}
member_
->
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
member_
->
places_
,
nccl_id
,
num_trainers
,
trainer_id
));
member_
->
places_
,
nccl_id
.
get
(),
num_trainers
,
trainer_id
,
need_group_call
));
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
}
if
(
member_
->
local_scopes_
.
size
()
!=
1
&&
local_scopes
.
empty
())
{
BCastParamsToDevices
(
bcast_vars
);
}
// Startup Program has been run. All local scopes has correct parameters.
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
if
(
exec_strategy
.
type_
==
ExecutionStrategy
::
kParallelGraph
)
{
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
{
member_
->
places_
[
i
]},
loss_var_name
,
params
,
{
member_
->
local_scopes_
[
i
]},
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
graphs
.
push_back
(
std
::
move
(
graph
));
}
}
else
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
graphs
.
push_back
(
std
::
move
(
graph
));
}
auto
max_memory_size
=
GetEagerDeletionThreshold
();
if
(
max_memory_size
>=
0
)
{
// FIXME(Yancey1989): need to fix on parallel graph mode
if
(
max_memory_size
>=
0
&&
exec_strategy
.
type_
!=
ExecutionStrategy
::
kParallelGraph
)
{
for
(
auto
&
place
:
member_
->
places_
)
{
if
(
!
platform
::
is_gpu_place
(
place
))
continue
;
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
...
...
@@ -143,40 +172,48 @@ ParallelExecutor::ParallelExecutor(
}
}
if
(
!
gcs_
.
empty
())
{
auto
ref_cnt_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"reference_count_pass"
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGlobalReferenceCount
,
&
ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kCurReferenceCount
,
&
cur_ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGarbageCollector
,
&
gcs_
);
graph
=
ref_cnt_pass
->
Apply
(
std
::
move
(
graph
));
graph
->
SetNotOwned
(
"garbage_collector"
,
&
gcs_
);
for
(
size_t
i
=
0
;
i
<
graphs
.
size
();
++
i
)
{
auto
ref_cnt_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"reference_count_pass"
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGlobalReferenceCount
,
&
ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kCurReferenceCount
,
&
cur_ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGarbageCollector
,
&
gcs_
);
graphs
[
0
]
=
ref_cnt_pass
->
Apply
(
std
::
move
(
graphs
[
i
]));
graphs
[
0
]
->
SetNotOwned
(
"garbage_collector"
,
&
gcs_
);
}
}
}
#else
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
);
graphs
.
push_back
(
std
::
move
(
graph
));
#endif
// Step 3. Create vars in each scope. Passes may also create new vars.
// skip control vars and empty vars
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
for
(
auto
&
node
:
graph
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
node
->
Var
()
->
Name
();
var_infos
.
back
().
type_
=
node
->
Var
()
->
GetType
();
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
std
::
vector
<
std
::
vector
<
details
::
VariableInfo
>>
var_infos_list
;
for
(
size_t
i
=
0
;
i
<
graphs
.
size
();
++
i
)
{
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
for
(
auto
&
node
:
graphs
[
i
]
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
node
->
Var
()
->
Name
();
var_infos
.
back
().
type_
=
node
->
Var
()
->
GetType
();
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
}
}
var_infos_list
.
emplace_back
(
std
::
move
(
var_infos
));
}
// If the loss_var_name is given, the number of graph should be only one.
if
(
loss_var_name
.
size
())
{
size_t
graph_num
=
ir
::
GraphNum
(
*
graph
);
size_t
graph_num
=
ir
::
GraphNum
(
*
graph
s
[
0
]
);
if
(
graph_num
>
1
)
{
LOG
(
WARNING
)
<<
"The number of graph should be only one, "
"but the current graph has "
<<
ir
::
GraphNum
(
*
graph
)
<<
ir
::
GraphNum
(
*
graph
s
[
0
]
)
<<
" sub_graphs. If you want to see the nodes of the "
"sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
"to specify the output dir. NOTES: if you not do training, "
...
...
@@ -185,15 +222,42 @@ ParallelExecutor::ParallelExecutor(
}
if
(
exec_strategy
.
type_
==
ExecutionStrategy
::
kDefault
)
{
/**
for (size_t i = 0; i < member_->places_.size(); ++i) {
std::vector<details::VariableInfo> var_infos;
for (auto &node : graphs[i]->Nodes()) {
if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
var_infos.emplace_back();
var_infos.back().name_ = node->Var()->Name();
var_infos.back().type_ = node->Var()->GetType();
var_infos.back().persistable_ = node->Var()->Persistable();
}
}
std::vector<platform::Place> places = {member_->places_[i]};
std::vector<framework::Scope *> scopes = {member_->local_scopes_[i]};
std::unique_ptr<details::ThreadedSSAGraphExecutor> p(new
details::ThreadedSSAGraphExecutor(
exec_strategy, scopes, places, std::move(graphs[i])));
member_->executors_.push_back(std::move(p));
member_->executors_[i].reset(new details::ScopeBufferedSSAGraphExecutor(
exec_strategy, scopes, std::move(var_infos), places,
std::move(member_->executors_[i])));
}**/
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
)));
exec_strategy
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graphs
[
0
])));
}
else
if
(
exec_strategy
.
type_
==
ExecutionStrategy
::
kParallelGraph
)
{
member_
->
executor_
.
reset
(
new
details
::
ParallelSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
places
,
graphs
));
}
else
{
member_
->
executor_
.
reset
(
new
details
::
FastThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
)));
exec_strategy
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
s
[
0
]
)));
}
member_
->
executor_
.
reset
(
new
details
::
ScopeBufferedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
std
::
move
(
var_infos
),
exec_strategy
,
member_
->
local_scopes_
,
std
::
move
(
var_infos
_list
),
member_
->
places_
,
std
::
move
(
member_
->
executor_
)));
}
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
c9de6f1b
...
...
@@ -20,6 +20,8 @@ limitations under the License. */
#include <unordered_set>
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/executor.h"
...
...
paddle/fluid/framework/scope.cc
浏览文件 @
c9de6f1b
...
...
@@ -58,7 +58,10 @@ int64_t GetEagerDeletionThreshold() {
(
static_cast
<
int64_t
>
(
1
)
<<
30
));
}
Scope
::~
Scope
()
{
DropKids
();
}
Scope
::~
Scope
()
{
VLOG
(
5
)
<<
"~Scope()"
;
DropKids
();
}
Scope
&
Scope
::
NewScope
()
const
{
SCOPE_LOCK_GUARD
...
...
paddle/fluid/framework/threadpool.cc
浏览文件 @
c9de6f1b
...
...
@@ -48,9 +48,18 @@ void ThreadPool::Init() {
ThreadPool
::
ThreadPool
(
int
num_threads
)
:
running_
(
true
)
{
threads_
.
resize
(
num_threads
);
for
(
auto
&
thread
:
threads_
)
{
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
// for (auto& thread : threads_) {
// TODO(Yancey1989): binding the thread on the specify CPU number
thread
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
ThreadPool
::
TaskLoop
,
this
)));
threads_
[
i
].
reset
(
new
std
::
thread
(
std
::
bind
(
&
ThreadPool
::
TaskLoop
,
this
,
i
)));
/**
sched_param sch;
int policy;
pthread_getschedparam(threads_[i]->native_handle(), &policy, &sch);
if (pthread_setschedparam(threads_[i]->native_handle(), SCHED_FIFO, &sch)) {
VLOG(1) << "Failed to setschedparam: " << errno;
}**/
}
}
...
...
@@ -68,7 +77,7 @@ ThreadPool::~ThreadPool() {
}
}
void
ThreadPool
::
TaskLoop
()
{
void
ThreadPool
::
TaskLoop
(
int
i
)
{
while
(
true
)
{
Task
task
;
...
...
@@ -89,7 +98,6 @@ void ThreadPool::TaskLoop() {
task
=
std
::
move
(
tasks_
.
front
());
tasks_
.
pop
();
}
// run the task
task
();
}
...
...
paddle/fluid/framework/threadpool.h
浏览文件 @
c9de6f1b
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <pthread.h>
#include <condition_variable> // NOLINT
#include <functional>
#include <future> // NOLINT
...
...
@@ -27,7 +28,6 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
struct
ExceptionHandler
{
mutable
std
::
future
<
std
::
unique_ptr
<
platform
::
EnforceNotMet
>>
future_
;
explicit
ExceptionHandler
(
...
...
@@ -99,7 +99,7 @@ class ThreadPool {
// The constructor starts threads to run TaskLoop, which retrieves
// and runs tasks from the queue.
void
TaskLoop
();
void
TaskLoop
(
int
i
);
// Init is called by GetInstance.
static
void
Init
();
...
...
paddle/fluid/framework/threadpool_test.cc
浏览文件 @
c9de6f1b
...
...
@@ -59,3 +59,47 @@ TEST(ThreadPool, ConcurrentRun) {
}
EXPECT_EQ
(
sum
,
((
n
+
1
)
*
n
)
/
2
);
}
static
int64_t
GetTS
()
{
struct
timeval
tp
;
gettimeofday
(
&
tp
,
NULL
);
return
tp
.
tv_sec
*
1000000
+
tp
.
tv_usec
;
}
void
multi_call
(
std
::
function
<
void
()
>
call
)
{
for
(
int
i
=
0
;
i
<
500
;
++
i
)
{
call
();
}
}
TEST
(
ThreadPool
,
PERFORMANCE
)
{
auto
sum
=
[]
{
int
a
=
0
;
for
(
int
i
=
0
;
i
<
1000
;
++
i
)
{
a
+=
i
;
}
};
// framework::ThreadPool *pool = new framework::ThreadPool(2);
int64_t
start
=
GetTS
();
for
(
int
i
=
0
;
i
<
1000
;
++
i
)
{
// int64_t s = GetTS();
framework
::
Async
(
std
::
move
(
sum
));
// pool->Run(std::move(sum));
// VLOG(5) << "push to pool spent : " << GetTS() - s << " (us).";
}
VLOG
(
5
)
<<
"pool spent: "
<<
GetTS
()
-
start
<<
" (us)."
;
start
=
GetTS
();
for
(
int
i
=
0
;
i
<
1000
;
++
i
)
{
sum
();
}
VLOG
(
5
)
<<
"sequence call spent: "
<<
GetTS
()
-
start
<<
" (us)."
;
std
::
vector
<
std
::
thread
>
threads
;
start
=
GetTS
();
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
std
::
thread
t
(
multi_call
,
std
::
ref
(
sum
));
threads
.
push_back
(
std
::
move
(
t
));
}
for
(
auto
&
thread
:
threads
)
{
thread
.
join
();
}
VLOG
(
5
)
<<
"two threads spent: "
<<
GetTS
()
-
start
<<
" (us)."
;
}
paddle/fluid/operators/reader/blocking_queue.h
浏览文件 @
c9de6f1b
...
...
@@ -67,9 +67,12 @@ class BlockingQueue {
}
bool
Receive
(
T
*
elem
)
{
VLOG
(
1
)
<<
"blocking queue::Receive ..."
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
receive_cv_
.
wait
(
lock
,
[
&
]
{
return
!
queue_
.
empty
()
||
closed_
;
});
VLOG
(
1
)
<<
"queue_.empty()="
<<
queue_
.
empty
();
if
(
!
queue_
.
empty
())
{
if
(
elem
==
nullptr
)
VLOG
(
1
)
<<
"elem is nullptr"
;
PADDLE_ENFORCE_NOT_NULL
(
elem
);
*
elem
=
queue_
.
front
();
if
(
LIKELY
(
!
speed_test_mode_
))
{
...
...
paddle/fluid/operators/reader/buffered_reader.cc
浏览文件 @
c9de6f1b
...
...
@@ -58,7 +58,9 @@ void BufferedReader::ReadAsync(size_t i) {
TensorVec
&
gpu
=
gpu_buffer_
[
i
];
gpu
.
resize
(
cpu
.
size
());
for
(
size_t
i
=
0
;
i
<
cpu
.
size
();
++
i
)
{
VLOG
(
1
)
<<
"launch tensor copy from cpu to cpu, idx: "
<<
i
;
framework
::
TensorCopySync
(
cpu
[
i
],
place_
,
&
gpu
[
i
]);
VLOG
(
1
)
<<
"done "
<<
i
;
gpu
[
i
].
set_lod
(
cpu
[
i
].
lod
());
}
}
...
...
@@ -80,11 +82,13 @@ void BufferedReader::StartImpl() {
}
void
BufferedReader
::
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>
*
out
)
{
VLOG
(
1
)
<<
"ReadNextImpl start on place: "
<<
place_
;
if
(
position_
.
empty
())
{
out
->
clear
();
return
;
}
size_t
i
=
position_
.
front
().
get
();
VLOG
(
1
)
<<
"position front: "
<<
i
;
position_
.
pop
();
if
(
i
==
-
1UL
)
{
...
...
@@ -101,6 +105,7 @@ void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
ReadAsync
(
prev_pos_
);
}
prev_pos_
=
i
;
VLOG
(
1
)
<<
"success ReadNextImpl"
;
}
}
// namespace reader
...
...
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
浏览文件 @
c9de6f1b
...
...
@@ -25,9 +25,15 @@ class CreateDoubleBufferReaderOp : public framework::OperatorBase {
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
template
GetMutable
<
framework
::
ReaderHolder
>();
VLOG
(
1
)
<<
"find var in scope: "
<<
&
scope
;
auto
*
out_var
=
scope
.
FindVar
(
Output
(
"Out"
));
VLOG
(
1
)
<<
"var "
<<
Output
(
"Out"
)
<<
" -> "
<<
out_var
;
auto
*
out
=
out_var
->
GetMutable
<
framework
::
ReaderHolder
>
();
// auto* out = scope.Var(Output("Out"))
// ->template GetMutable<framework::ReaderHolder>();
if
(
out
->
Get
()
!=
nullptr
)
{
VLOG
(
1
)
<<
Output
(
"Out"
)
<<
" is not nullptr."
;
return
;
}
const
auto
&
underlying_reader
=
scope
.
FindVar
(
Input
(
"UnderlyingReader"
))
...
...
@@ -46,9 +52,11 @@ class CreateDoubleBufferReaderOp : public framework::OperatorBase {
sin
>>
num
;
place
=
platform
::
CUDAPlace
(
static_cast
<
int
>
(
num
));
}
VLOG
(
1
)
<<
"create buffered reader on "
<<
place
;
out
->
Reset
(
framework
::
MakeDecoratedReader
<
BufferedReader
>
(
underlying_reader
,
place
,
2
));
VLOG
(
1
)
<<
"Reset Buffered Reader in var: "
<<
scope
.
FindVar
(
Input
(
"UnderlyingReader"
));
}
};
...
...
paddle/fluid/operators/reader/create_py_reader_op.cc
浏览文件 @
c9de6f1b
...
...
@@ -28,8 +28,10 @@ class PyReader : public framework::FileReader {
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
VLOG
(
1
)
<<
"come in PyReader::ReadNext function, out: "
<<
out
;
bool
success
;
*
out
=
queue_
->
Pop
(
&
success
);
VLOG
(
1
)
<<
"call PyReader::ReadNext "
<<
success
;
if
(
!
success
)
out
->
clear
();
}
...
...
paddle/fluid/operators/reader/open_files_op.cc
浏览文件 @
c9de6f1b
...
...
@@ -115,10 +115,12 @@ class PreemptiveReaderContainer : public IReaderContainer {
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
VLOG
(
1
)
<<
"flag"
;
if
(
!
pending_
.
empty
())
{
auto
future_it
=
complete_queue_
.
Pop
();
FutureItem
item
=
future_it
->
get
();
if
(
item
.
exception_
)
{
VLOG
(
1
)
<<
"item has exception!!!"
;
for
(
auto
it
=
futures_
.
begin
();
it
!=
futures_
.
end
();
++
it
)
{
if
(
it
!=
future_it
)
{
it
->
wait
();
// Wait all other threads complete.
...
...
paddle/fluid/platform/nccl_helper.h
浏览文件 @
c9de6f1b
...
...
@@ -82,12 +82,15 @@ struct NCCLContext {
struct
NCCLContextMap
{
std
::
unordered_map
<
int
,
NCCLContext
>
contexts_
;
std
::
vector
<
int
>
order_
;
bool
need_group_call_
;
explicit
NCCLContextMap
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
ncclUniqueId
*
nccl_id
=
nullptr
,
size_t
num_trainers
=
1
,
size_t
trainer_id
=
0
)
{
size_t
num_trainers
=
1
,
size_t
trainer_id
=
0
,
bool
need_group_call
=
true
)
{
PADDLE_ENFORCE
(
!
places
.
empty
());
order_
.
reserve
(
places
.
size
());
need_group_call_
=
need_group_call
;
for
(
auto
&
p
:
places
)
{
int
dev_id
=
boost
::
get
<
CUDAPlace
>
(
p
).
device
;
order_
.
emplace_back
(
dev_id
);
...
...
@@ -102,7 +105,7 @@ struct NCCLContextMap {
}
std
::
unique_ptr
<
ncclComm_t
[]
>
comms
(
new
ncclComm_t
[
order_
.
size
()]);
// if num_trainers == 1, should create a new nccl id for local comms.
if
(
num_trainers
==
1
)
{
if
(
num_trainers
==
1
&&
nccl_id
!=
nullptr
)
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
NCCLGroupGuard
::
NCCLMutex
());
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclCommInitAll
(
comms
.
get
(),
static_cast
<
int
>
(
order_
.
size
()),
order_
.
data
()));
...
...
paddle/fluid/platform/profiler.cc
浏览文件 @
c9de6f1b
...
...
@@ -12,9 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/port.h"
#include <algorithm>
#include <iomanip>
#include <limits>
...
...
@@ -25,9 +22,12 @@ limitations under the License. */
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#endif // PADDLE_WITH_CUDA
#include "glog/logging.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/platform/device_tracer.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/string/printf.h"
DEFINE_bool
(
enable_rpc_profiler
,
false
,
"Enable rpc profiler or not."
);
...
...
@@ -173,8 +173,9 @@ void PopEvent(const std::string& name, const DeviceContext* dev_ctx) {
RecordEvent
::
RecordEvent
(
const
std
::
string
&
name
,
const
DeviceContext
*
dev_ctx
)
:
is_enabled_
(
false
),
start_ns_
(
PosixInNsec
())
{
std
::
lock_guard
<
std
::
mutex
>
l
(
profiler_mu
);
if
(
g_state
==
ProfilerState
::
kDisabled
)
return
;
std
::
lock_guard
<
std
::
mutex
>
l
(
profiler_mu
);
is_enabled_
=
true
;
dev_ctx_
=
dev_ctx
;
name_
=
name
;
...
...
@@ -184,8 +185,9 @@ RecordEvent::RecordEvent(const std::string& name, const DeviceContext* dev_ctx)
}
RecordEvent
::~
RecordEvent
()
{
std
::
lock_guard
<
std
::
mutex
>
l
(
profiler_mu
);
if
(
g_state
==
ProfilerState
::
kDisabled
||
!
is_enabled_
)
return
;
VLOG
(
5
)
<<
"call ~RecordEvent"
;
std
::
lock_guard
<
std
::
mutex
>
l
(
profiler_mu
);
DeviceTracer
*
tracer
=
GetDeviceTracer
();
if
(
tracer
)
{
tracer
->
AddCPURecords
(
CurAnnotation
(),
start_ns_
,
PosixInNsec
(),
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
c9de6f1b
...
...
@@ -720,6 +720,11 @@ All parameter, weight, gradient are variables in Paddle.
)DOC"
);
py
::
enum_
<
ExecutionStrategy
::
ExecutorType
>
(
exec_strategy
,
"ExecutorType"
)
.
value
(
"Default"
,
ExecutionStrategy
::
ExecutorType
::
kDefault
)
.
value
(
"Experimental"
,
ExecutionStrategy
::
ExecutorType
::
kExperimental
)
.
value
(
"ParallelGraph"
,
ExecutionStrategy
::
ExecutorType
::
kParallelGraph
);
exec_strategy
.
def
(
py
::
init
())
.
def_property
(
"num_threads"
,
...
...
@@ -777,17 +782,14 @@ All parameter, weight, gradient are variables in Paddle.
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
dry_run_
;
},
[](
ExecutionStrategy
&
self
,
bool
dry_run
)
{
self
.
dry_run_
=
dry_run
;
});
exec_strategy
.
def_property
(
"use_experimental_executor"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
type_
==
ExecutionStrategy
::
kExperimental
;
},
[](
ExecutionStrategy
&
self
,
bool
experimental
)
{
self
.
type_
=
experimental
?
ExecutionStrategy
::
kExperimental
:
ExecutionStrategy
::
kDefault
;
});
})
.
def_property
(
"executor_type"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
type_
;
},
[](
ExecutionStrategy
&
self
,
ExecutionStrategy
::
ExecutorType
type
)
{
self
.
type_
=
type
;
},
R"DOC()DOC"
);
py
::
class_
<
BuildStrategy
>
build_strategy
(
pe
,
"BuildStrategy"
,
R"DOC(
BuildStrategy allows the user to more preciously control how to
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录