Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c9b4adf0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c9b4adf0
编写于
1月 12, 2019
作者:
X
Xin Pan
提交者:
GitHub
1月 12, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15220 from velconia/imperative_shared_ptr
Refine imperative VarBase
上级
06efc6f3
c86b3dd6
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
312 addition
and
259 deletion
+312
-259
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+5
-5
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+33
-13
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+195
-1
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+4
-180
paddle/fluid/imperative/type_defs.h
paddle/fluid/imperative/type_defs.h
+31
-0
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+3
-2
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+7
-15
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+4
-13
python/paddle/fluid/imperative/base.py
python/paddle/fluid/imperative/base.py
+1
-1
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+6
-6
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+2
-2
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+12
-12
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+9
-9
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
c9b4adf0
...
...
@@ -44,7 +44,7 @@ void AddTo(Variable* src, Variable* dst) {
src_tensor
->
numel
());
float
*
dst_data
=
dst_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
const
float
*
src_data
=
src_tensor
->
data
<
float
>
();
for
(
size
_t
i
=
0
;
i
<
src_tensor
->
numel
();
++
i
)
{
for
(
int64
_t
i
=
0
;
i
<
src_tensor
->
numel
();
++
i
)
{
dst_data
[
i
]
+=
src_data
[
i
];
}
}
...
...
@@ -117,9 +117,9 @@ class Autograd {
}
};
framework
::
LoDTensor
&
VarBase
::
Grad
()
{
framework
::
LoDTensor
&
VarBase
::
Grad
Value
()
{
VLOG
(
3
)
<<
"get var grad "
<<
var_desc_
->
Name
();
return
*
grads_
->
GetMutable
<
framework
::
LoDTensor
>
(
);
return
*
(
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
()
);
}
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
()
{
...
...
@@ -183,7 +183,7 @@ void VarBase::RunBackward() {
if
(
!
pre_op_
)
return
;
VLOG
(
3
)
<<
"start backward"
;
auto
grads_t
=
grads_
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
grads_t
=
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
float
*
data
=
grads_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
std
::
fill
(
data
,
data
+
grads_t
->
numel
(),
1.0
);
...
...
@@ -209,7 +209,7 @@ std::vector<VarBase*> PyLayer::Apply(int func_id,
std
::
vector
<
Variable
*>
outvars
=
CallPythonFunc
(
py_funcs_
[
func_id
],
invars
);
std
::
vector
<
VarBase
*>
ret
;
for
(
Variable
*
v
:
outvars
)
{
ret
.
push_back
(
new
VarBase
(
v
,
new
Var
iable
(
)));
ret
.
push_back
(
new
VarBase
(
v
,
new
Var
Base
(
true
)));
}
return
ret
;
}
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
c9b4adf0
...
...
@@ -17,13 +17,14 @@
#include <map>
#include <string>
#include <vector>
#include "pybind11/pybind11.h"
#include "Python.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
#include "pybind11/pybind11.h"
#include "paddle/fluid/imperative/type_defs.h"
namespace
paddle
{
namespace
imperative
{
...
...
@@ -85,13 +86,19 @@ class PreparedOp {
class
OpBase
;
/* The wrapper for Variable which holds a Variable and a VarBase of its
* gradient. This object should be managed totally by Python intepreter.
*
* Nearly all interface should be implemented in C++.
*/
class
VarBase
{
public:
VarBase
()
:
VarBase
(
new
framework
::
Variable
(),
new
framework
::
Variable
(
))
{}
VarBase
()
:
VarBase
(
new
framework
::
Variable
(),
new
VarBase
(
true
))
{}
// Owns `var` and `grad`
VarBase
(
framework
::
Variable
*
var
,
framework
::
Variabl
e
*
grad
)
VarBase
(
framework
::
Variable
*
var
,
VarBas
e
*
grad
)
:
pre_op_
(
nullptr
),
pre_op_out_name_
(),
pre_op_out_idx_
(
-
1
),
var_desc_
(
nullptr
),
var_
(
var
),
...
...
@@ -100,17 +107,26 @@ class VarBase {
explicit
VarBase
(
bool
stop_gradient
)
:
pre_op_
(
nullptr
),
pre_op_out_name_
(),
pre_op_out_idx_
(
-
1
),
var_desc_
(
nullptr
),
var_
(
new
framework
::
Variable
()),
grads_
(
new
framework
::
Variable
(
)),
grads_
(
stop_gradient
?
nullptr
:
new
VarBase
(
true
)),
stop_gradient_
(
stop_gradient
)
{}
virtual
~
VarBase
()
{}
virtual
~
VarBase
()
{
if
(
var_
)
{
delete
var_
;
}
if
(
grads_
)
{
delete
grads_
;
}
}
void
RunBackward
();
framework
::
LoDTensor
&
Grad
();
framework
::
LoDTensor
&
Grad
Value
();
inline
std
::
string
GradName
()
const
{
PADDLE_ENFORCE
(
...
...
@@ -124,12 +140,16 @@ class VarBase {
int
pre_op_out_idx_
;
framework
::
VarDesc
*
var_desc_
;
framework
::
Variable
*
var_
;
framework
::
Variabl
e
*
grads_
;
VarBas
e
*
grads_
;
bool
stop_gradient_
;
};
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
* gradient. This object should be managed totally by Python intepreter.
*/
class
OpBase
{
public:
OpBase
()
...
...
@@ -153,13 +173,13 @@ class OpBase {
framework
::
OpDesc
*
grad_op_desc_
;
int
backward_id_
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
input_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
output_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
OpBase
*>>
pre_ops_
;
VarBasePtrMap
input_vars_
;
VarBasePtrMap
output_vars_
;
OpBasePtrMap
pre_ops_
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
pre_ops_out_idx_
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_input_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_output_vars_
;
framework
::
VariableValueMap
grad_input_vars_
;
framework
::
VariableValueMap
grad_output_vars_
;
framework
::
BlockDesc
*
block_
;
};
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
c9b4adf0
...
...
@@ -15,5 +15,199 @@
#include "paddle/fluid/imperative/tracer.h"
namespace
paddle
{
namespace
imperative
{}
// namespace imperative
namespace
imperative
{
void
CreateGradOp
(
const
framework
::
OpDesc
&
op_desc
,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_set
,
const
std
::
vector
<
framework
::
BlockDesc
*>&
grad_sub_block
,
framework
::
OpDesc
**
grad_op_desc
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
grad_to_var
)
{
std
::
vector
<
std
::
unique_ptr
<
framework
::
OpDesc
>>
grad_op_descs
=
framework
::
OpInfoMap
::
Instance
()
.
Get
(
op_desc
.
Type
())
.
GradOpMaker
()(
op_desc
,
no_grad_set
,
grad_to_var
,
grad_sub_block
);
PADDLE_ENFORCE
(
grad_op_descs
.
size
()
==
1
,
"Only support 1 grad op now."
);
// TODO(panyx0718): Leak?
*
grad_op_desc
=
grad_op_descs
[
0
].
release
();
}
void
InitVar
(
framework
::
Variable
*
var
,
framework
::
Variable
*
grad_var
)
{
auto
&
var_t
=
var
->
Get
<
framework
::
LoDTensor
>
();
float
*
data
=
grad_var
->
GetMutable
<
framework
::
LoDTensor
>
()
->
mutable_data
<
float
>
(
var_t
.
dims
(),
platform
::
CPUPlace
());
std
::
fill
(
data
,
data
+
var_t
.
numel
(),
0.0
);
}
void
Tracer
::
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
bool
stop_gradient
)
{
std
::
map
<
std
::
string
,
VarBase
*>
vars
;
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
VLOG
(
3
)
<<
"tracer tracing "
<<
op_desc
->
Type
();
op_desc
->
InferShape
(
*
block
);
op_desc
->
InferVarType
(
block
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_base
=
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
framework
::
VariableValueMap
invars_map
;
framework
::
VariableValueMap
outvars_map
;
op
->
input_vars_
=
inputs
;
for
(
auto
it
:
op
->
input_vars_
)
{
auto
&
invars
=
invars_map
[
it
.
first
];
for
(
VarBase
*
inp
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
inp
->
var_
,
"op %s input %s nullptr"
,
op
->
op_desc_
->
Type
(),
inp
->
var_desc_
->
Name
());
invars
.
push_back
(
inp
->
var_
);
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
if
(
inp
->
pre_op_
)
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
pre_op_
);
op
->
pre_ops_out_idx_
[
it
.
first
].
push_back
(
inp
->
pre_op_out_idx_
);
}
else
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
nullptr
);
}
VLOG
(
3
)
<<
"input vname "
<<
inp
->
var_desc_
->
Name
()
<<
" "
<<
inp
->
var_
->
IsInitialized
();
}
}
op
->
output_vars_
=
outputs
;
for
(
auto
it
:
op
->
output_vars_
)
{
auto
&
outvars
=
outvars_map
[
it
.
first
];
const
std
::
vector
<
VarBase
*>&
outputs
=
it
.
second
;
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
VarBase
*
out
=
outputs
[
i
];
outvars
.
push_back
(
out
->
var_
);
vars
[
out
->
var_desc_
->
Name
()]
=
out
;
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
out
->
var_desc_
->
Name
());
if
(
var_desc
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
out
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
{
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
}
out
->
stop_gradient_
=
stop_gradient
;
out
->
pre_op_
=
op
;
out
->
pre_op_out_name_
=
it
.
first
;
out
->
pre_op_out_idx_
=
i
;
VLOG
(
3
)
<<
"output vname "
<<
out
->
var_desc_
->
Name
()
<<
" "
<<
out
->
var_
->
IsInitialized
();
}
}
VLOG
(
3
)
<<
"tracer running "
<<
op_desc
->
Type
();
framework
::
RuntimeContext
ctx
(
invars_map
,
outvars_map
);
// TODO(panyx0718): Cache p.
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
op_base
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place
);
p
.
op
.
RuntimeInferShape
(
scope
,
place
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
if
(
!
stop_gradient
)
{
framework
::
OpDesc
*
grad_op_desc
;
// TODO(panyx): Is this leaked?
std
::
unique_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
grad_to_var
(
new
std
::
unordered_map
<
std
::
string
,
std
::
string
>
());
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
.
get
());
op
->
grad_op_desc_
=
grad_op_desc
;
for
(
auto
it
:
grad_op_desc
->
Inputs
())
{
auto
&
grad_in_vars
=
op
->
grad_input_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_invar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_invar
);
auto
var_it
=
grad_to_var
->
find
(
grad_invar
);
if
(
var_it
==
grad_to_var
->
end
())
{
auto
fwd_var_it
=
vars
.
find
(
grad_invar
);
PADDLE_ENFORCE
(
fwd_var_it
!=
vars
.
end
());
// Forward inputs or outputs.
grad_in_vars
.
push_back
(
fwd_var_it
->
second
->
var_
);
}
else
{
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
var_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
->
var_
);
}
// Douts.
grad_in_vars
.
push_back
(
var
->
grads_
->
var_
);
}
}
}
for
(
auto
it
:
grad_op_desc
->
Outputs
())
{
auto
&
grad_out_vars
=
op
->
grad_output_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_outvar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_outvar
);
auto
var_it
=
grad_to_var
->
find
(
grad_outvar
);
PADDLE_ENFORCE
(
var_it
!=
grad_to_var
->
end
());
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
var_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
->
var_
);
}
grad_out_vars
.
push_back
(
var
->
grads_
->
var_
);
}
}
}
op
->
block_
=
block
;
}
std
::
vector
<
VarBase
*>
Tracer
::
PyTrace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
inputs
,
bool
stop_gradient
)
{
VLOG
(
3
)
<<
"py_trace"
;
op
->
input_vars_
[
"X"
]
=
inputs
;
op
->
output_vars_
[
"Out"
]
=
PyLayer
::
Apply
(
op
->
forward_id_
,
inputs
);
for
(
VarBase
*
inp
:
inputs
)
{
if
(
inp
->
pre_op_
)
{
op
->
pre_ops_
[
"X"
].
push_back
(
inp
->
pre_op_
);
op
->
pre_ops_out_idx_
[
"X"
].
push_back
(
inp
->
pre_op_out_idx_
);
}
else
{
op
->
pre_ops_
[
"X"
].
push_back
(
nullptr
);
}
}
auto
&
outputs
=
op
->
output_vars_
[
"Out"
];
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
VarBase
*
out
=
outputs
[
i
];
out
->
stop_gradient_
=
stop_gradient
;
out
->
pre_op_
=
op
;
out
->
pre_op_out_name_
=
"Out"
;
out
->
pre_op_out_idx_
=
i
;
}
if
(
!
stop_gradient
)
{
auto
&
grad_input_vars
=
op
->
grad_input_vars_
[
"X@GRAD"
];
auto
&
grad_output_vars
=
op
->
grad_output_vars_
[
"Out@GRAD"
];
for
(
const
VarBase
*
inp
:
inputs
)
{
grad_input_vars
.
push_back
(
inp
->
var_
);
}
for
(
VarBase
*
out
:
outputs
)
{
grad_input_vars
.
push_back
(
out
->
var_
);
}
for
(
VarBase
*
out
:
outputs
)
{
grad_input_vars
.
push_back
(
out
->
grads_
->
var_
);
if
(
!
grad_input_vars
.
back
()
->
IsInitialized
())
{
InitVar
(
out
->
var_
,
grad_input_vars
.
back
());
}
}
for
(
const
VarBase
*
inp
:
inputs
)
{
grad_output_vars
.
push_back
(
inp
->
grads_
->
var_
);
if
(
!
grad_output_vars
.
back
()
->
IsInitialized
())
{
InitVar
(
inp
->
var_
,
grad_output_vars
.
back
());
}
}
}
return
outputs
;
}
}
// namespace imperative
}
// namespace paddle
paddle/fluid/imperative/tracer.h
浏览文件 @
c9b4adf0
...
...
@@ -30,23 +30,9 @@ void CreateGradOp(const framework::OpDesc& op_desc,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_set
,
const
std
::
vector
<
framework
::
BlockDesc
*>&
grad_sub_block
,
framework
::
OpDesc
**
grad_op_desc
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
grad_to_var
)
{
std
::
vector
<
std
::
unique_ptr
<
framework
::
OpDesc
>>
grad_op_descs
=
framework
::
OpInfoMap
::
Instance
()
.
Get
(
op_desc
.
Type
())
.
GradOpMaker
()(
op_desc
,
no_grad_set
,
grad_to_var
,
grad_sub_block
);
PADDLE_ENFORCE
(
grad_op_descs
.
size
()
==
1
,
"Only support 1 grad op now."
);
// TODO(panyx0718): Leak?
*
grad_op_desc
=
grad_op_descs
[
0
].
release
();
}
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
grad_to_var
);
void
InitVar
(
framework
::
Variable
*
var
,
framework
::
Variable
*
grad_var
)
{
auto
&
var_t
=
var
->
Get
<
framework
::
LoDTensor
>
();
float
*
data
=
grad_var
->
GetMutable
<
framework
::
LoDTensor
>
()
->
mutable_data
<
float
>
(
var_t
.
dims
(),
platform
::
CPUPlace
());
std
::
fill
(
data
,
data
+
var_t
.
numel
(),
0.0
);
}
void
InitVar
(
framework
::
Variable
*
var
,
framework
::
Variable
*
grad_var
);
class
Tracer
{
public:
...
...
@@ -57,172 +43,10 @@ class Tracer {
void
Trace
(
OpBase
*
op
,
const
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>&
inputs
,
const
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>&
outputs
,
framework
::
BlockDesc
*
block
,
const
bool
stop_gradient
=
false
)
{
std
::
map
<
std
::
string
,
VarBase
*>
vars
;
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
VLOG
(
3
)
<<
"tracer tracing "
<<
op_desc
->
Type
();
op_desc
->
InferShape
(
*
block
);
op_desc
->
InferVarType
(
block
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_base
=
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
framework
::
VariableValueMap
invars_map
;
framework
::
VariableValueMap
outvars_map
;
op
->
input_vars_
=
inputs
;
for
(
auto
it
:
op
->
input_vars_
)
{
auto
&
invars
=
invars_map
[
it
.
first
];
for
(
VarBase
*
inp
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
inp
->
var_
,
"op %s input %s nullptr"
,
op
->
op_desc_
->
Type
(),
inp
->
var_desc_
->
Name
());
invars
.
push_back
(
inp
->
var_
);
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
if
(
inp
->
pre_op_
)
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
pre_op_
);
op
->
pre_ops_out_idx_
[
it
.
first
].
push_back
(
inp
->
pre_op_out_idx_
);
}
else
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
nullptr
);
}
VLOG
(
3
)
<<
"input vname "
<<
inp
->
var_desc_
->
Name
()
<<
" "
<<
inp
->
var_
->
IsInitialized
();
}
}
op
->
output_vars_
=
outputs
;
for
(
auto
it
:
op
->
output_vars_
)
{
auto
&
outvars
=
outvars_map
[
it
.
first
];
const
std
::
vector
<
VarBase
*>&
outputs
=
it
.
second
;
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
VarBase
*
out
=
outputs
[
i
];
outvars
.
push_back
(
out
->
var_
);
vars
[
out
->
var_desc_
->
Name
()]
=
out
;
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
out
->
var_desc_
->
Name
());
if
(
var_desc
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
out
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
{
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
}
out
->
stop_gradient_
=
stop_gradient
;
out
->
pre_op_
=
op
;
out
->
pre_op_out_name_
=
it
.
first
;
out
->
pre_op_out_idx_
=
i
;
VLOG
(
3
)
<<
"output vname "
<<
out
->
var_desc_
->
Name
()
<<
" "
<<
out
->
var_
->
IsInitialized
();
}
}
VLOG
(
3
)
<<
"tracer running "
<<
op_desc
->
Type
();
framework
::
RuntimeContext
ctx
(
invars_map
,
outvars_map
);
// TODO(panyx0718): Cache p.
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
op_base
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place
);
p
.
op
.
RuntimeInferShape
(
scope
,
place
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
if
(
!
stop_gradient
)
{
framework
::
OpDesc
*
grad_op_desc
;
// TODO(panyx): Is this leaked?
std
::
unique_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
grad_to_var
(
new
std
::
unordered_map
<
std
::
string
,
std
::
string
>
());
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
.
get
());
op
->
grad_op_desc_
=
grad_op_desc
;
for
(
auto
it
:
grad_op_desc
->
Inputs
())
{
auto
&
grad_in_vars
=
op
->
grad_input_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_invar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_invar
);
auto
var_it
=
grad_to_var
->
find
(
grad_invar
);
if
(
var_it
==
grad_to_var
->
end
())
{
auto
fwd_var_it
=
vars
.
find
(
grad_invar
);
PADDLE_ENFORCE
(
fwd_var_it
!=
vars
.
end
());
// Forward inputs or outputs.
grad_in_vars
.
push_back
(
fwd_var_it
->
second
->
var_
);
}
else
{
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
);
}
// Douts.
grad_in_vars
.
push_back
(
var
->
grads_
);
}
}
}
for
(
auto
it
:
grad_op_desc
->
Outputs
())
{
auto
&
grad_out_vars
=
op
->
grad_output_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_outvar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_outvar
);
auto
var_it
=
grad_to_var
->
find
(
grad_outvar
);
PADDLE_ENFORCE
(
var_it
!=
grad_to_var
->
end
());
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
);
}
grad_out_vars
.
push_back
(
var
->
grads_
);
}
}
}
op
->
block_
=
block
;
}
framework
::
BlockDesc
*
block
,
const
bool
stop_gradient
=
false
);
std
::
vector
<
VarBase
*>
PyTrace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
inputs
,
bool
stop_gradient
=
false
)
{
VLOG
(
3
)
<<
"py_trace"
;
op
->
input_vars_
[
"X"
]
=
inputs
;
op
->
output_vars_
[
"Out"
]
=
PyLayer
::
Apply
(
op
->
forward_id_
,
inputs
);
for
(
VarBase
*
inp
:
inputs
)
{
if
(
inp
->
pre_op_
)
{
op
->
pre_ops_
[
"X"
].
push_back
(
inp
->
pre_op_
);
op
->
pre_ops_out_idx_
[
"X"
].
push_back
(
inp
->
pre_op_out_idx_
);
}
else
{
op
->
pre_ops_
[
"X"
].
push_back
(
nullptr
);
}
}
auto
&
outputs
=
op
->
output_vars_
[
"Out"
];
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
VarBase
*
out
=
outputs
[
i
];
out
->
stop_gradient_
=
stop_gradient
;
out
->
pre_op_
=
op
;
out
->
pre_op_out_name_
=
"Out"
;
out
->
pre_op_out_idx_
=
i
;
}
if
(
!
stop_gradient
)
{
auto
&
grad_input_vars
=
op
->
grad_input_vars_
[
"X@GRAD"
];
auto
&
grad_output_vars
=
op
->
grad_output_vars_
[
"Out@GRAD"
];
for
(
const
VarBase
*
inp
:
inputs
)
{
grad_input_vars
.
push_back
(
inp
->
var_
);
}
for
(
VarBase
*
out
:
outputs
)
{
grad_input_vars
.
push_back
(
out
->
var_
);
}
for
(
VarBase
*
out
:
outputs
)
{
grad_input_vars
.
push_back
(
out
->
grads_
);
if
(
!
grad_input_vars
.
back
()
->
IsInitialized
())
{
InitVar
(
out
->
var_
,
grad_input_vars
.
back
());
}
}
for
(
const
VarBase
*
inp
:
inputs
)
{
grad_output_vars
.
push_back
(
inp
->
grads_
);
if
(
!
grad_output_vars
.
back
()
->
IsInitialized
())
{
InitVar
(
inp
->
var_
,
grad_output_vars
.
back
());
}
}
}
return
outputs
;
}
bool
stop_gradient
=
false
);
private:
framework
::
BlockDesc
*
root_block_
;
...
...
paddle/fluid/imperative/type_defs.h
0 → 100644
浏览文件 @
c9b4adf0
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <map>
#include <string>
#include <vector>
namespace
paddle
{
namespace
imperative
{
class
VarBase
;
class
OpBase
;
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
VarBasePtrMap
;
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
OpBase
*>>
OpBasePtrMap
;
}
// namespace imperative
}
// namespace paddle
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
c9b4adf0
set
(
PYBIND_DEPS pybind python proto_desc memory executor async_executor prune feed_fetch_method pass_builder parallel_executor profiler layer scope_pool
)
set
(
PYBIND_DEPS pybind python proto_desc memory executor async_executor prune
feed_fetch_method pass_builder parallel_executor profiler layer scope_pool
tracer
)
if
(
WITH_PYTHON
)
list
(
APPEND PYBIND_DEPS py_func_op
)
endif
()
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
c9b4adf0
...
...
@@ -126,26 +126,18 @@ PYBIND11_MODULE(core, m) {
m
.
add_object
(
"_cleanup"
,
py
::
capsule
([]()
{
ScopePool
::
Instance
().
Clear
();
}));
py
::
class_
<
imperative
::
VarBase
,
std
::
shared_ptr
<
imperative
::
VarBase
>>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
py
::
class_
<
imperative
::
VarBase
>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
// .def(py::init<>())
.
def
(
py
::
init
<
bool
>
(),
py
::
arg
(
"stop_gradient"
)
=
false
)
.
def
(
"_run_backward"
,
[](
imperative
::
VarBase
&
self
)
{
self
.
RunBackward
();
})
.
def
(
"_grad_name"
,
&
imperative
::
VarBase
::
GradName
)
.
def
(
"_grad"
,
&
imperative
::
VarBase
::
Grad
)
.
def_property
(
"grad_value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
grads_
;
},
[](
imperative
::
VarBase
&
self
,
framework
::
Variable
*
grad
)
{
self
.
grads_
=
grad
;
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
[](
imperative
::
VarBase
&
self
,
framework
::
Variable
*
var
)
{
self
.
var_
=
var
;
},
py
::
return_value_policy
::
reference
)
.
def
(
"_grad_value"
,
&
imperative
::
VarBase
::
GradValue
)
.
def
(
"_grad_ivar"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
grads_
;
},
py
::
return_value_policy
::
reference
)
.
def
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"desc"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_desc_
;
},
...
...
python/paddle/fluid/framework.py
浏览文件 @
c9b4adf0
...
...
@@ -372,30 +372,21 @@ class Variable(object):
self
.
stop_gradient
=
stop_gradient
self
.
is_data
=
is_data
if
_in_imperative_mode
():
if
'ivar'
in
kwargs
:
self
.
_ivar
=
kwargs
[
'ivar'
]
else
:
self
.
_ivar
=
kwargs
.
get
(
"ivar"
,
None
)
if
not
self
.
_ivar
:
self
.
_ivar
=
core
.
VarBase
()
self
.
_ivar
.
desc
=
self
.
desc
self
.
_ivar
.
stop_gradient
=
stop_gradient
def
_numpy
(
self
):
tensor
=
self
.
_ivar
.
value
.
get_tensor
()
tensor
=
self
.
_ivar
.
value
()
.
get_tensor
()
return
np
.
array
(
tensor
)
def
_backward
(
self
):
self
.
_ivar
.
_run_backward
()
def
_gradient
(
self
):
return
np
.
array
(
self
.
_ivar
.
_grad
())
@
property
def
_value
(
self
):
return
self
.
_ivar
.
value
@
_value
.
setter
def
_value
(
self
,
v
):
self
.
_ivar
.
value
=
v
return
np
.
array
(
self
.
_ivar
.
_grad_value
())
def
__str__
(
self
):
return
self
.
to_string
(
True
)
...
...
python/paddle/fluid/imperative/base.py
浏览文件 @
c9b4adf0
...
...
@@ -45,7 +45,7 @@ def to_variable(value, block=None):
name
=
None
,
shape
=
value
.
shape
,
dtype
=
value
.
dtype
)
var
=
py_var
.
_ivar
.
value
var
=
py_var
.
_ivar
.
value
()
tensor
=
var
.
get_tensor
()
tensor
.
set
(
value
,
core
.
CPUPlace
())
return
py_var
...
...
python/paddle/fluid/imperative/layers.py
浏览文件 @
c9b4adf0
...
...
@@ -55,18 +55,18 @@ class PyLayer(core.PyLayer):
super
(
PyLayer
,
self
).
__init__
()
@
staticmethod
def
forward
(
inputs
):
def
forward
(
*
inputs
):
raise
NotImplementedError
@
staticmethod
def
backward
(
douts
):
def
backward
(
*
douts
):
raise
NotImplementedError
@
classmethod
def
__call__
(
cls
,
inputs
):
def
__call__
(
cls
,
*
inputs
):
tracer
=
framework
.
_imperative_tracer
()
block
=
framework
.
default_main_program
().
current_block
()
inputs
=
[
x
.
_ivar
for
x
in
inputs
]
i
var_i
nputs
=
[
x
.
_ivar
for
x
in
inputs
]
if
not
hasattr
(
cls
,
'forward_id'
):
cls
.
forward_id
=
core
.
PyLayer
.
num_funcs
()
+
1
...
...
@@ -78,11 +78,11 @@ class PyLayer(core.PyLayer):
iop
.
forward_id
=
cls
.
forward_id
iop
.
backward_id
=
cls
.
backward_id
block
.
ops
.
append
(
iop
)
ivars
=
tracer
.
py_trace
(
iop
,
inputs
,
False
)
ivars
=
tracer
.
py_trace
(
iop
,
i
var_i
nputs
,
False
)
# ivars = core.PyLayer.apply(cls.forward, inputs)
ret
=
[]
for
ivar
in
ivars
:
tensor
=
ivar
.
value
.
get_tensor
()
tensor
=
ivar
.
value
()
.
get_tensor
()
py_var
=
framework
.
Variable
(
block
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
c9b4adf0
...
...
@@ -390,8 +390,8 @@ class Optimizer(object):
grad_var
=
Variable
(
block
=
loss
.
block
,
name
=
param
.
_ivar
.
_grad_name
(),
stop_gradient
=
True
)
grad_var
.
_value
=
param
.
_ivar
.
grad_value
stop_gradient
=
True
,
ivar
=
param
.
_ivar
.
_grad_ivar
())
params_grads
.
append
((
param
,
grad_var
))
with
program_guard
(
program
,
startup_program
):
optimize_ops
=
self
.
_create_optimization_pass
(
params_grads
)
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
c9b4adf0
...
...
@@ -97,35 +97,35 @@ class TestImperative(unittest.TestCase):
super
(
PyLayer1
,
self
).
__init__
()
@
staticmethod
def
forward
(
input
s
):
return
input
s
def
forward
(
input
):
return
input
@
staticmethod
def
backward
(
input
s
):
return
input
s
def
backward
(
input
):
return
input
class
PyLayer2
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
):
super
(
PyLayer2
,
self
).
__init__
()
@
staticmethod
def
forward
(
input
s
):
return
input
s
def
forward
(
input
):
return
input
@
staticmethod
def
backward
(
input
s
):
return
input
s
def
backward
(
input
):
return
input
py_layer_1
=
PyLayer1
()
py_layer_2
=
PyLayer2
()
py_layer_1
(
[
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
]))]
)
py_layer_2
(
[
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
]))]
)
py_layer_1
(
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
]))
)
py_layer_2
(
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
]))
)
id
=
py_layer_1
.
forward_id
self
.
assertGreater
(
id
,
0
)
self
.
assertEqual
(
py_layer_1
.
backward_id
,
id
+
1
)
self
.
assertEqual
(
py_layer_2
.
forward_id
,
id
+
2
)
self
.
assertEqual
(
py_layer_2
.
backward_id
,
id
+
3
)
py_layer_1
(
[
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
]))]
)
py_layer_1
(
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
]))
)
self
.
assertEqual
(
py_layer_1
.
forward_id
,
id
)
def
test_pylayer
(
self
):
...
...
@@ -133,7 +133,7 @@ class TestImperative(unittest.TestCase):
with
fluid
.
imperative
.
guard
():
my_py_layer
=
MyPyLayer
()
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
outs
=
my_py_layer
(
[
var_inp
]
)
outs
=
my_py_layer
(
var_inp
)
dy_out
=
np
.
sum
(
outs
[
0
].
_numpy
())
outs
[
0
].
_backward
()
dy_grad
=
var_inp
.
_gradient
()
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
c9b4adf0
...
...
@@ -105,7 +105,6 @@ class TestImperativeMnist(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# mnist = Conv2D(1, 20, 5)
mnist
=
MNIST
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
...
...
@@ -126,16 +125,17 @@ class TestImperativeMnist(unittest.TestCase):
label
.
_stop_gradient
=
True
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
dy_out
=
loss
.
_numpy
()
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
dy_out
=
avg_loss
.
_numpy
()
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
loss
.
_backward
()
sgd
.
minimize
(
loss
)
avg_
loss
.
_backward
()
sgd
.
minimize
(
avg_
loss
)
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
...
...
@@ -147,7 +147,6 @@ class TestImperativeMnist(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
# mnist = Conv2D(1, 20, 5)
mnist
=
MNIST
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
...
...
@@ -157,8 +156,9 @@ class TestImperativeMnist(unittest.TestCase):
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
.
minimize
(
loss
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
sgd
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
...
...
@@ -182,7 +182,7 @@ class TestImperativeMnist(unittest.TestCase):
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
128
,
1
])
fetch_list
=
[
loss
.
name
]
fetch_list
=
[
avg_
loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
x_data
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录