Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c9823094
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c9823094
编写于
8月 31, 2022
作者:
Z
zhiboniu
提交者:
GitHub
8月 31, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
pose3d metro datasets part (#6611)
* pose3d metro datasets * delete extra comment lines
上级
7b6bdf91
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
364 addition
and
13 deletion
+364
-13
ppdet/data/source/__init__.py
ppdet/data/source/__init__.py
+1
-0
ppdet/data/source/category.py
ppdet/data/source/category.py
+3
-0
ppdet/data/source/pose3d_cmb.py
ppdet/data/source/pose3d_cmb.py
+191
-0
ppdet/data/transform/keypoint_operators.py
ppdet/data/transform/keypoint_operators.py
+169
-13
未找到文件。
ppdet/data/source/__init__.py
浏览文件 @
c9823094
...
@@ -28,3 +28,4 @@ from .keypoint_coco import *
...
@@ -28,3 +28,4 @@ from .keypoint_coco import *
from
.mot
import
*
from
.mot
import
*
from
.sniper_coco
import
SniperCOCODataSet
from
.sniper_coco
import
SniperCOCODataSet
from
.dataset
import
ImageFolder
from
.dataset
import
ImageFolder
from
.pose3d_cmb
import
Pose3DDataset
ppdet/data/source/category.py
浏览文件 @
c9823094
...
@@ -118,6 +118,9 @@ def get_categories(metric_type, anno_file=None, arch=None):
...
@@ -118,6 +118,9 @@ def get_categories(metric_type, anno_file=None, arch=None):
)
==
'keypointtopdownmpiieval'
:
)
==
'keypointtopdownmpiieval'
:
return
(
None
,
{
'id'
:
'keypoint'
})
return
(
None
,
{
'id'
:
'keypoint'
})
elif
metric_type
.
lower
()
==
'pose3deval'
:
return
(
None
,
{
'id'
:
'pose3d'
})
elif
metric_type
.
lower
()
in
[
'mot'
,
'motdet'
,
'reid'
]:
elif
metric_type
.
lower
()
in
[
'mot'
,
'motdet'
,
'reid'
]:
if
anno_file
and
os
.
path
.
isfile
(
anno_file
):
if
anno_file
and
os
.
path
.
isfile
(
anno_file
):
cats
=
[]
cats
=
[]
...
...
ppdet/data/source/pose3d_cmb.py
0 → 100644
浏览文件 @
c9823094
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
this code is base on https://github.com/open-mmlab/mmpose
"""
import
os
import
cv2
import
numpy
as
np
import
json
import
copy
import
pycocotools
from
pycocotools.coco
import
COCO
from
.dataset
import
DetDataset
from
ppdet.core.workspace
import
register
,
serializable
@
serializable
class
Pose3DDataset
(
DetDataset
):
"""Pose3D Dataset class.
Args:
dataset_dir (str): Root path to the dataset.
anno_list (list of str): each of the element is a relative path to the annotation file.
image_dirs (list of str): each of path is a relative path where images are held.
transform (composed(operators)): A sequence of data transforms.
test_mode (bool): Store True when building test or
validation dataset. Default: False.
24 joints order:
0-2: 'R_Ankle', 'R_Knee', 'R_Hip',
3-5:'L_Hip', 'L_Knee', 'L_Ankle',
6-8:'R_Wrist', 'R_Elbow', 'R_Shoulder',
9-11:'L_Shoulder','L_Elbow','L_Wrist',
12-14:'Neck','Top_of_Head','Pelvis',
15-18:'Thorax','Spine','Jaw','Head',
19-23:'Nose','L_Eye','R_Eye','L_Ear','R_Ear'
"""
def
__init__
(
self
,
dataset_dir
,
image_dirs
,
anno_list
,
transform
=
[],
num_joints
=
24
,
test_mode
=
False
):
super
().
__init__
(
dataset_dir
,
image_dirs
,
anno_list
)
self
.
image_info
=
{}
self
.
ann_info
=
{}
self
.
num_joints
=
num_joints
self
.
transform
=
transform
self
.
test_mode
=
test_mode
self
.
img_ids
=
[]
self
.
dataset_dir
=
dataset_dir
self
.
image_dirs
=
image_dirs
self
.
anno_list
=
anno_list
def
get_mask
(
self
,
mvm_percent
=
0.3
):
num_joints
=
self
.
num_joints
mjm_mask
=
np
.
ones
((
num_joints
,
1
)).
astype
(
np
.
float
)
if
self
.
test_mode
==
False
:
pb
=
np
.
random
.
random_sample
()
masked_num
=
int
(
pb
*
mvm_percent
*
num_joints
)
# at most x% of the joints could be masked
indices
=
np
.
random
.
choice
(
np
.
arange
(
num_joints
),
replace
=
False
,
size
=
masked_num
)
mjm_mask
[
indices
,
:]
=
0.0
mvm_mask
=
np
.
ones
((
10
,
1
)).
astype
(
np
.
float
)
if
self
.
test_mode
==
False
:
num_vertices
=
10
pb
=
np
.
random
.
random_sample
()
masked_num
=
int
(
pb
*
mvm_percent
*
num_vertices
)
# at most x% of the vertices could be masked
indices
=
np
.
random
.
choice
(
np
.
arange
(
num_vertices
),
replace
=
False
,
size
=
masked_num
)
mvm_mask
[
indices
,
:]
=
0.0
mjm_mask
=
np
.
concatenate
([
mjm_mask
,
mvm_mask
],
axis
=
0
)
return
mjm_mask
def
filterjoints
(
self
,
x
):
if
self
.
num_joints
==
24
:
return
x
elif
self
.
num_joints
==
14
:
return
x
[[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
18
],
:]
elif
self
.
num_joints
==
17
:
return
x
[
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
14
,
15
,
18
,
19
],
:]
else
:
raise
ValueError
(
"unsupported joint numbers, only [24 or 17 or 14] is supported!"
)
def
parse_dataset
(
self
):
print
(
"Loading annotations..., please wait"
)
self
.
annos
=
[]
im_id
=
0
for
idx
,
annof
in
enumerate
(
self
.
anno_list
):
img_prefix
=
os
.
path
.
join
(
self
.
dataset_dir
,
self
.
image_dirs
[
idx
])
dataf
=
os
.
path
.
join
(
self
.
dataset_dir
,
annof
)
with
open
(
dataf
,
'r'
)
as
rf
:
anno_data
=
json
.
load
(
rf
)
annos
=
anno_data
[
'data'
]
new_annos
=
[]
print
(
"{} has annos numbers: {}"
.
format
(
dataf
,
len
(
annos
)))
for
anno
in
annos
:
new_anno
=
{}
new_anno
[
'im_id'
]
=
im_id
im_id
+=
1
imagename
=
anno
[
'imageName'
]
if
imagename
.
startswith
(
"COCO_train2014_"
):
imagename
=
imagename
[
len
(
"COCO_train2014_"
):]
elif
imagename
.
startswith
(
"COCO_val2014_"
):
imagename
=
imagename
[
len
(
"COCO_val2014_"
):]
imagename
=
os
.
path
.
join
(
img_prefix
,
imagename
)
if
not
os
.
path
.
exists
(
imagename
):
if
"train2017"
in
imagename
:
imagename
=
imagename
.
replace
(
"train2017"
,
"val2017"
)
if
not
os
.
path
.
exists
(
imagename
):
print
(
"cannot find imagepath:{}"
.
format
(
imagename
))
continue
else
:
print
(
"cannot find imagepath:{}"
.
format
(
imagename
))
continue
new_anno
[
'imageName'
]
=
imagename
new_anno
[
'bbox_center'
]
=
anno
[
'bbox_center'
]
new_anno
[
'bbox_scale'
]
=
anno
[
'bbox_scale'
]
new_anno
[
'joints_2d'
]
=
np
.
array
(
anno
[
'gt_keypoint_2d'
]).
astype
(
np
.
float32
)
if
new_anno
[
'joints_2d'
].
shape
[
0
]
==
49
:
#if the joints_2d is in SPIN format(which generated by eft), choose the last 24 public joints
#for detail please refer: https://github.com/nkolot/SPIN/blob/master/constants.py
new_anno
[
'joints_2d'
]
=
new_anno
[
'joints_2d'
][
25
:]
new_anno
[
'joints_3d'
]
=
np
.
array
(
anno
[
'pose3d'
])[:,
:
3
].
astype
(
np
.
float32
)
new_anno
[
'mjm_mask'
]
=
self
.
get_mask
()
if
not
'has_3d_joints'
in
anno
:
new_anno
[
'has_3d_joints'
]
=
int
(
1
)
new_anno
[
'has_2d_joints'
]
=
int
(
1
)
else
:
new_anno
[
'has_3d_joints'
]
=
int
(
anno
[
'has_3d_joints'
])
new_anno
[
'has_2d_joints'
]
=
int
(
anno
[
'has_2d_joints'
])
new_anno
[
'joints_2d'
]
=
self
.
filterjoints
(
new_anno
[
'joints_2d'
])
self
.
annos
.
append
(
new_anno
)
del
annos
def
__len__
(
self
):
"""Get dataset length."""
return
len
(
self
.
annos
)
def
_get_imganno
(
self
,
idx
):
"""Get anno for a single image."""
return
self
.
annos
[
idx
]
def
__getitem__
(
self
,
idx
):
"""Prepare image for training given the index."""
records
=
copy
.
deepcopy
(
self
.
_get_imganno
(
idx
))
imgpath
=
records
[
'imageName'
]
assert
os
.
path
.
exists
(
imgpath
),
"cannot find image {}"
.
format
(
imgpath
)
records
[
'image'
]
=
cv2
.
imread
(
imgpath
)
records
[
'image'
]
=
cv2
.
cvtColor
(
records
[
'image'
],
cv2
.
COLOR_BGR2RGB
)
records
=
self
.
transform
(
records
)
return
records
def
check_or_download_dataset
(
self
):
alldatafind
=
True
for
image_dir
in
self
.
image_dirs
:
image_dir
=
os
.
path
.
join
(
self
.
dataset_dir
,
image_dir
)
if
not
os
.
path
.
isdir
(
image_dir
):
print
(
"dataset [{}] is not found"
.
format
(
image_dir
))
alldatafind
=
False
if
not
alldatafind
:
raise
ValueError
(
"Some dataset is not valid and cannot download automatically now, please prepare the dataset first"
)
ppdet/data/transform/keypoint_operators.py
浏览文件 @
c9823094
...
@@ -36,19 +36,12 @@ logger = setup_logger(__name__)
...
@@ -36,19 +36,12 @@ logger = setup_logger(__name__)
registered_ops
=
[]
registered_ops
=
[]
__all__
=
[
__all__
=
[
'RandomAffine'
,
'RandomAffine'
,
'KeyPointFlip'
,
'TagGenerate'
,
'ToHeatmaps'
,
'KeyPointFlip'
,
'NormalizePermute'
,
'EvalAffine'
,
'RandomFlipHalfBodyTransform'
,
'TagGenerate'
,
'TopDownAffine'
,
'ToHeatmapsTopDown'
,
'ToHeatmapsTopDown_DARK'
,
'ToHeatmaps'
,
'ToHeatmapsTopDown_UDP'
,
'TopDownEvalAffine'
,
'NormalizePermute'
,
'AugmentationbyInformantionDropping'
,
'SinglePoseAffine'
,
'NoiseJitter'
,
'EvalAffine'
,
'FlipPose'
'RandomFlipHalfBodyTransform'
,
'TopDownAffine'
,
'ToHeatmapsTopDown'
,
'ToHeatmapsTopDown_DARK'
,
'ToHeatmapsTopDown_UDP'
,
'TopDownEvalAffine'
,
'AugmentationbyInformantionDropping'
,
]
]
...
@@ -618,6 +611,169 @@ class TopDownAffine(object):
...
@@ -618,6 +611,169 @@ class TopDownAffine(object):
return
records
return
records
@
register_keypointop
class
SinglePoseAffine
(
object
):
"""apply affine transform to image and coords
Args:
trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
trainsize
,
rotate
=
[
1.0
,
30
],
scale
=
[
1.0
,
0.25
],
use_udp
=
False
):
self
.
trainsize
=
trainsize
self
.
use_udp
=
use_udp
self
.
rot_prob
=
rotate
[
0
]
self
.
rot_range
=
rotate
[
1
]
self
.
scale_prob
=
scale
[
0
]
self
.
scale_ratio
=
scale
[
1
]
def
__call__
(
self
,
records
):
image
=
records
[
'image'
]
if
'joints_2d'
in
records
:
joints
=
records
[
'joints_2d'
]
if
'joints_2d'
in
records
else
None
joints_vis
=
records
[
'joints_vis'
]
if
'joints_vis'
in
records
else
np
.
ones
(
(
len
(
joints
),
1
))
rot
=
0
s
=
1.
if
np
.
random
.
random
()
<
self
.
rot_prob
:
rot
=
np
.
clip
(
np
.
random
.
randn
()
*
self
.
rot_range
,
-
self
.
rot_range
*
2
,
self
.
rot_range
*
2
)
if
np
.
random
.
random
()
<
self
.
scale_prob
:
s
=
np
.
clip
(
np
.
random
.
randn
()
*
self
.
scale_ratio
+
1
,
1
-
self
.
scale_ratio
,
1
+
self
.
scale_ratio
)
if
self
.
use_udp
:
trans
=
get_warp_matrix
(
rot
,
np
.
array
(
records
[
'bbox_center'
])
*
2.0
,
[
self
.
trainsize
[
0
]
-
1.0
,
self
.
trainsize
[
1
]
-
1.0
],
records
[
'bbox_scale'
]
*
200.0
*
s
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
if
'joints_2d'
in
records
:
joints
[:,
0
:
2
]
=
warp_affine_joints
(
joints
[:,
0
:
2
].
copy
(),
trans
)
else
:
trans
=
get_affine_transform
(
np
.
array
(
records
[
'bbox_center'
]),
records
[
'bbox_scale'
]
*
s
*
200
,
rot
,
self
.
trainsize
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
if
'joints_2d'
in
records
:
for
i
in
range
(
len
(
joints
)):
if
joints_vis
[
i
,
0
]
>
0.0
:
joints
[
i
,
0
:
2
]
=
affine_transform
(
joints
[
i
,
0
:
2
],
trans
)
if
'joints_3d'
in
records
:
pose3d
=
records
[
'joints_3d'
]
if
not
rot
==
0
:
trans_3djoints
=
np
.
eye
(
3
)
rot_rad
=
-
rot
*
np
.
pi
/
180
sn
,
cs
=
np
.
sin
(
rot_rad
),
np
.
cos
(
rot_rad
)
trans_3djoints
[
0
,
:
2
]
=
[
cs
,
-
sn
]
trans_3djoints
[
1
,
:
2
]
=
[
sn
,
cs
]
pose3d
[:,
:
3
]
=
np
.
einsum
(
'ij,kj->ki'
,
trans_3djoints
,
pose3d
[:,
:
3
])
records
[
'joints_3d'
]
=
pose3d
records
[
'image'
]
=
image
if
'joints_2d'
in
records
:
records
[
'joints_2d'
]
=
joints
return
records
@
register_keypointop
class
NoiseJitter
(
object
):
"""apply NoiseJitter to image
Args:
noise_factor (float): the noise factor ratio used to generate the jitter
Returns:
records (dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
noise_factor
=
0.4
):
self
.
noise_factor
=
noise_factor
def
__call__
(
self
,
records
):
self
.
pn
=
np
.
random
.
uniform
(
1
-
self
.
noise_factor
,
1
+
self
.
noise_factor
,
3
)
rgb_img
=
records
[
'image'
]
rgb_img
[:,
:,
0
]
=
np
.
minimum
(
255.0
,
np
.
maximum
(
0.0
,
rgb_img
[:,
:,
0
]
*
self
.
pn
[
0
]))
rgb_img
[:,
:,
1
]
=
np
.
minimum
(
255.0
,
np
.
maximum
(
0.0
,
rgb_img
[:,
:,
1
]
*
self
.
pn
[
1
]))
rgb_img
[:,
:,
2
]
=
np
.
minimum
(
255.0
,
np
.
maximum
(
0.0
,
rgb_img
[:,
:,
2
]
*
self
.
pn
[
2
]))
records
[
'image'
]
=
rgb_img
return
records
@
register_keypointop
class
FlipPose
(
object
):
"""random apply flip to image
Args:
noise_factor (float): the noise factor ratio used to generate the jitter
Returns:
records (dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
flip_prob
=
0.5
,
img_res
=
224
,
num_joints
=
14
):
self
.
flip_pob
=
flip_prob
self
.
img_res
=
img_res
if
num_joints
==
24
:
self
.
perm
=
[
5
,
4
,
3
,
2
,
1
,
0
,
11
,
10
,
9
,
8
,
7
,
6
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
21
,
20
,
23
,
22
]
elif
num_joints
==
14
:
self
.
perm
=
[
5
,
4
,
3
,
2
,
1
,
0
,
11
,
10
,
9
,
8
,
7
,
6
,
12
,
13
]
else
:
print
(
"error num_joints in flip :{}"
.
format
(
num_joints
))
def
__call__
(
self
,
records
):
if
np
.
random
.
random
()
<
self
.
flip_pob
:
img
=
records
[
'image'
]
img
=
np
.
fliplr
(
img
)
if
'joints_2d'
in
records
:
joints_2d
=
records
[
'joints_2d'
]
joints_2d
=
joints_2d
[
self
.
perm
]
joints_2d
[:,
0
]
=
self
.
img_res
-
joints_2d
[:,
0
]
records
[
'joints_2d'
]
=
joints_2d
if
'joints_3d'
in
records
:
joints_3d
=
records
[
'joints_3d'
]
joints_3d
=
joints_3d
[
self
.
perm
]
joints_3d
[:,
0
]
=
-
joints_3d
[:,
0
]
records
[
'joints_3d'
]
=
joints_3d
records
[
'image'
]
=
img
return
records
@
register_keypointop
@
register_keypointop
class
TopDownEvalAffine
(
object
):
class
TopDownEvalAffine
(
object
):
"""apply affine transform to image and coords
"""apply affine transform to image and coords
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录