Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c76c6bd0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c76c6bd0
编写于
6月 26, 2019
作者:
S
Shixiaowei02
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update kernels/arm/conv_compute_test.cc
上级
c8bb0af7
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
219 addition
and
28 deletion
+219
-28
paddle/fluid/lite/core/lite_tensor.h
paddle/fluid/lite/core/lite_tensor.h
+1
-1
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
+218
-27
未找到文件。
paddle/fluid/lite/core/lite_tensor.h
浏览文件 @
c76c6bd0
...
@@ -47,7 +47,7 @@ class DDimLite : public DDimBase<DDimLite> {
...
@@ -47,7 +47,7 @@ class DDimLite : public DDimBase<DDimLite> {
std
::
multiplies
<
value_type
>
());
std
::
multiplies
<
value_type
>
());
}
}
const
std
::
vector
<
value_type
>
&
data
()
const
{
return
data_
;
}
const
std
::
vector
<
value_type
>
&
data
()
const
{
return
data_
;
}
value_type
count
(
int
start
,
int
end
)
{
value_type
count
(
int
start
,
int
end
)
const
{
if
(
start
<
0
)
{
if
(
start
<
0
)
{
start
=
0
;
start
=
0
;
}
}
...
...
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
浏览文件 @
c76c6bd0
...
@@ -26,27 +26,10 @@ namespace lite {
...
@@ -26,27 +26,10 @@ namespace lite {
namespace
kernels
{
namespace
kernels
{
namespace
arm
{
namespace
arm
{
static
float
compute_max_kernel
(
const
float
*
din
,
int64_t
size
)
{
static
int
get_rand
(
int
start
,
int
end
)
{
float
max_value
=
-
std
::
numeric_limits
<
float
>::
max
();
int
i
=
rand
();
// NOLINT
for
(
int64_t
i
=
0
;
i
<
size
;
i
++
)
{
i
=
(
i
%
(
end
-
start
))
+
start
;
max_value
=
max_value
>
din
[
0
]
?
max_value
:
din
[
0
];
return
i
;
}
LOG
(
INFO
)
<<
"[max_value]: "
<<
max_value
;
return
max_value
;
}
static
std
::
vector
<
float
>
get_tensor_scale_n
(
const
float
*
in_data
,
int
axis_size
,
int64_t
inner_size
,
float
scale_factor
)
{
std
::
vector
<
float
>
scale_out
(
axis_size
);
for
(
int
c
=
0
;
c
<
axis_size
;
++
c
)
{
// num
const
float
*
ptr_in
=
in_data
+
c
*
inner_size
;
// channel*width*height
scale_out
[
c
]
=
compute_max_kernel
(
ptr_in
,
inner_size
)
/
scale_factor
;
}
for
(
auto
s
:
scale_out
)
{
LOG
(
INFO
)
<<
"[Scale out]: "
<<
s
;
}
return
scale_out
;
}
}
template
<
typename
Dtype1
,
typename
Dtype2
>
template
<
typename
Dtype1
,
typename
Dtype2
>
...
@@ -184,16 +167,16 @@ TEST(conv_arm_int8, init) {
...
@@ -184,16 +167,16 @@ TEST(conv_arm_int8, init) {
ASSERT_EQ
(
float_out
.
target
(),
TARGET
(
kARM
));
ASSERT_EQ
(
float_out
.
target
(),
TARGET
(
kARM
));
}
}
TEST
(
conv_arm_int8
,
compute
)
{
TEST
(
conv_arm_int8
,
int8_int32
)
{
DeviceInfo
::
Init
();
DeviceInfo
::
Init
();
for
(
auto
n
:
{
2
})
{
for
(
auto
n
:
{
2
})
{
for
(
auto
ic
:
{
6
})
{
for
(
auto
ic
:
{
6
})
{
for
(
auto
oc
:
{
6
})
{
for
(
auto
oc
:
{
6
})
{
for
(
auto
ih
:
{
9
})
{
for
(
auto
ih
:
{
9
})
{
for
(
auto
iw
:
{
9
})
{
for
(
auto
iw
:
{
9
})
{
for
(
auto
flag_bias
:
{
false
,
/*true*/
})
{
for
(
auto
flag_bias
:
{
false
,
true
})
{
for
(
auto
flag_relu
:
{
false
,
/*true*/
})
{
for
(
auto
flag_relu
:
{
false
,
true
})
{
for
(
auto
depthwise
:
{
false
,
/*true*/
})
{
for
(
auto
depthwise
:
{
false
,
true
})
{
for
(
auto
dilation
:
{
1
})
{
for
(
auto
dilation
:
{
1
})
{
for
(
auto
stride
:
{
1
})
{
for
(
auto
stride
:
{
1
})
{
for
(
auto
padding
:
{
0
})
{
for
(
auto
padding
:
{
0
})
{
...
@@ -226,11 +209,11 @@ TEST(conv_arm_int8, compute) {
...
@@ -226,11 +209,11 @@ TEST(conv_arm_int8, compute) {
filter_int8
.
mutable_data
<
int8_t
>
();
filter_int8
.
mutable_data
<
int8_t
>
();
for
(
int
i
=
0
;
i
<
input_int8
.
dims
().
production
();
for
(
int
i
=
0
;
i
<
input_int8
.
dims
().
production
();
i
++
)
{
i
++
)
{
input_int8_data
[
i
]
=
1.
f
;
input_int8_data
[
i
]
=
get_rand
(
-
128
,
127
)
;
}
}
for
(
int
i
=
0
;
i
<
filter_int8
.
dims
().
production
();
for
(
int
i
=
0
;
i
<
filter_int8
.
dims
().
production
();
i
++
)
{
i
++
)
{
filter_int8_data
[
i
]
=
1.
f
;
filter_int8_data
[
i
]
=
get_rand
(
-
128
,
127
)
;
}
}
operators
::
ConvParam
param
;
operators
::
ConvParam
param
;
...
@@ -278,6 +261,214 @@ TEST(conv_arm_int8, compute) {
...
@@ -278,6 +261,214 @@ TEST(conv_arm_int8, compute) {
}
}
}
}
TEST
(
conv_arm_int8
,
int8_fp32
)
{
DeviceInfo
::
Init
();
for
(
auto
n
:
{
2
})
{
for
(
auto
ic
:
{
6
})
{
for
(
auto
oc
:
{
6
})
{
for
(
auto
ih
:
{
9
})
{
for
(
auto
iw
:
{
9
})
{
for
(
auto
flag_bias
:
{
false
,
true
})
{
for
(
auto
flag_relu
:
{
false
,
true
})
{
for
(
auto
depthwise
:
{
false
,
true
})
{
for
(
auto
dilation
:
{
1
})
{
for
(
auto
stride
:
{
1
})
{
for
(
auto
padding
:
{
0
})
{
for
(
auto
ks
:
{
1
})
{
int
group
=
1
;
if
(
depthwise
)
{
// depthwise convolution ?
group
=
oc
=
ic
;
}
const
int
dks
=
dilation
*
(
ks
-
1
)
+
1
;
int
oh
=
(
ih
+
2
*
padding
-
dks
)
/
stride
+
1
;
int
ow
=
(
iw
+
2
*
padding
-
dks
)
/
stride
+
1
;
std
::
vector
<
int64_t
>
input_shape
=
{
n
,
ic
,
ih
,
iw
};
std
::
vector
<
int64_t
>
filter_shape
=
{
oc
,
ic
/
group
,
ks
,
ks
};
std
::
vector
<
int64_t
>
bias_shape
({
1
,
oc
,
1
,
1
});
std
::
vector
<
int64_t
>
output_shape
({
n
,
oc
,
oh
,
ow
});
Tensor
input_fp32
,
input_int8
;
Tensor
filter_fp32
,
filter_int8
;
Tensor
bias_fp32
,
bias_int8
;
Tensor
output_int32_ref
,
output_int32
;
Tensor
output_fp32_ref
,
output_fp32
;
Tensor
output_int8_ref
,
output_int8
;
input_fp32
.
Resize
(
input_shape
);
input_int8
.
Resize
(
input_shape
);
filter_fp32
.
Resize
(
filter_shape
);
filter_int8
.
Resize
(
filter_shape
);
bias_fp32
.
Resize
(
bias_shape
);
bias_int8
.
Resize
(
bias_shape
);
output_int32
.
Resize
(
output_shape
);
output_int32_ref
.
Resize
(
output_shape
);
output_fp32_ref
.
Resize
(
output_shape
);
output_fp32
.
Resize
(
output_shape
);
output_int8_ref
.
Resize
(
output_shape
);
output_int8
.
Resize
(
output_shape
);
float
*
input_fp32_data
=
input_fp32
.
mutable_data
<
float
>
();
int8_t
*
input_int8_data
=
input_int8
.
mutable_data
<
int8_t
>
();
float
*
filter_fp32_data
=
filter_fp32
.
mutable_data
<
float
>
();
int8_t
*
filter_int8_data
=
filter_int8
.
mutable_data
<
int8_t
>
();
float
*
bias_fp32_data
=
bias_fp32
.
mutable_data
<
float
>
();
int8_t
*
bias_int8_data
=
bias_int8
.
mutable_data
<
int8_t
>
();
for
(
int
i
=
0
;
i
<
input_fp32
.
dims
().
production
();
i
++
)
{
input_fp32_data
[
i
]
=
get_rand
(
-
100
,
100
)
/
100.
f
;
}
for
(
int
i
=
0
;
i
<
filter_fp32
.
dims
().
production
();
i
++
)
{
filter_fp32_data
[
i
]
=
get_rand
(
-
100
,
100
)
/
100.
f
;
}
for
(
int
i
=
0
;
i
<
bias_fp32
.
dims
().
production
();
i
++
)
{
bias_fp32_data
[
i
]
=
get_rand
(
-
100
,
100
)
/
100.
f
;
}
std
::
vector
<
float
>
in_scale
;
lite
::
arm
::
math
::
get_tensor_scale
<
PRECISION
(
kFloat
)
>
(
input_fp32
,
&
in_scale
,
-
1
,
127.
f
);
lite
::
arm
::
math
::
trans_tensor_fp32_to_int8
(
&
input_fp32
,
&
input_int8
,
in_scale
[
0
]);
std
::
vector
<
float
>
w_scale
;
lite
::
arm
::
math
::
get_tensor_scale
<
PRECISION
(
kFloat
)
>
(
filter_fp32
,
&
w_scale
,
-
1
,
127.
f
);
int
axis_size
=
oc
;
int
inner_size
=
ic
/
group
*
ks
*
ks
;
w_scale
=
lite
::
arm
::
math
::
get_tensor_scale_n
(
filter_fp32_data
,
axis_size
,
inner_size
,
127.
f
);
lite
::
arm
::
math
::
fp32_to_int8
(
filter_fp32_data
,
filter_int8_data
,
w_scale
.
data
(),
axis_size
,
1
,
inner_size
);
operators
::
ConvParam
param
;
param
.
x
=
&
input_int8
;
param
.
filter
=
&
filter_int8
;
param
.
bias
=
&
bias_int8
;
param
.
fuse_relu
=
false
;
param
.
paddings
=
std
::
vector
<
int
>
({
padding
,
padding
});
param
.
strides
=
std
::
vector
<
int
>
({
stride
,
stride
});
param
.
dilations
=
std
::
vector
<
int
>
({
dilation
,
dilation
});
param
.
groups
=
group
;
param
.
output
=
&
output_int32_ref
;
conv_compute_ref
<
int8_t
,
int
>
(
param
);
int32_t
*
output_int32_ref_data
=
output_int32_ref
.
mutable_data
<
int32_t
>
();
// ============ int8gemm_int32 ============
param
.
output
=
&
output_int32
;
std
::
unique_ptr
<
KernelContext
>
ctx_int32
(
new
KernelContext
);
lite
::
arm
::
math
::
GemmLikeConvInt8
<
PRECISION
(
kInt32
)
>
int8gemm_int32
;
int8gemm_int32
.
init
(
param
,
&
ctx_int32
->
As
<
ARMContext
>
());
int8gemm_int32
.
create
(
param
,
&
ctx_int32
->
As
<
ARMContext
>
());
int8gemm_int32
.
run
(
param
);
int32_t
*
output_int32_data
=
output_int32
.
mutable_data
<
int32_t
>
();
for
(
int
i
=
0
;
i
<
output_int32
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_int32_data
[
i
],
output_int32_ref_data
[
i
],
1e-3
);
}
// ============ int8gemm_int8 ============
int8_t
*
output_int8_ref_data
=
output_int8_ref
.
mutable_data
<
int8_t
>
();
lite
::
arm
::
math
::
trans_tensor_int32_to_int8
(
&
output_int32_ref
,
&
output_int8_ref
,
in_scale
[
0
],
1
,
w_scale
);
param
.
output
=
&
output_int8
;
param
.
input_scale
=
in_scale
[
0
];
param
.
output_scale
=
1
;
std
::
vector
<
float
>
w_scale_for_int8
;
for
(
auto
ws
:
w_scale
)
{
ws
*=
param
.
input_scale
;
ws
/=
param
.
output_scale
;
w_scale_for_int8
.
push_back
(
ws
);
}
param
.
weight_scale
=
w_scale_for_int8
;
std
::
unique_ptr
<
KernelContext
>
ctx_int8
(
new
KernelContext
);
lite
::
arm
::
math
::
GemmLikeConvInt8
<
PRECISION
(
kInt8
)
>
int8gemm_int8
;
int8gemm_int8
.
init
(
param
,
&
ctx_int8
->
As
<
ARMContext
>
());
int8gemm_int8
.
create
(
param
,
&
ctx_int8
->
As
<
ARMContext
>
());
int8gemm_int8
.
run
(
param
);
int8_t
*
output_int8_data
=
output_int8
.
mutable_data
<
int8_t
>
();
for
(
int
i
=
0
;
i
<
output_int8
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_int8_data
[
i
],
output_int8_ref_data
[
i
],
1e-3
);
}
// ============ int8gemm_float32 ============
float
*
output_fp32_ref_data
=
output_fp32_ref
.
mutable_data
<
float
>
();
lite
::
arm
::
math
::
trans_tensor_int32_to_fp32
(
&
output_int32_ref
,
&
output_fp32_ref
,
in_scale
[
0
],
w_scale
);
param
.
output
=
&
output_fp32
;
param
.
input_scale
=
in_scale
[
0
];
param
.
output_scale
=
1
;
std
::
vector
<
float
>
w_scale_for_fp32
;
for
(
auto
ws
:
w_scale
)
{
ws
*=
param
.
input_scale
;
w_scale_for_fp32
.
push_back
(
ws
);
}
param
.
weight_scale
=
w_scale_for_fp32
;
std
::
unique_ptr
<
KernelContext
>
ctx_fp32
(
new
KernelContext
);
lite
::
arm
::
math
::
GemmLikeConvInt8
<
PRECISION
(
kFloat
)
>
int8gemm_fp32
;
int8gemm_fp32
.
init
(
param
,
&
ctx_fp32
->
As
<
ARMContext
>
());
int8gemm_fp32
.
create
(
param
,
&
ctx_fp32
->
As
<
ARMContext
>
());
int8gemm_fp32
.
run
(
param
);
float
*
output_fp32_data
=
output_fp32
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
output_fp32
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_fp32_data
[
i
],
output_fp32_ref_data
[
i
],
1e-3
);
}
}
}
}
}
}
}
}
}
}
}
}
}
}
TEST
(
conv_arm
,
compute
)
{
TEST
(
conv_arm
,
compute
)
{
DeviceInfo
::
Init
();
DeviceInfo
::
Init
();
#if 1
#if 1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录